Câu hỏi:

04/02/2021 17,408

Tìm tất cả các giá trị thực của tham số m sao cho khoảng (2 ; 3)  thuộc tập nghiệm của bất phương trình log5( x2 + 1) > log5( x2 + 4x + m) - 1 (1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A.

Điều kiện: x2+4x+m>0

Bất phương trình trở thành: 

log5x2+1>log5x2+4x+m5x2+1>x2+4x+m5x2+4x+m>0

m<4x2-4x+5=fxm>-x2-4x=gx

Xét hàm số fx=4x2-4x+5

f'x=8x-4>0x2;3

Do đó hàm số luôn đồng biến trên (2;3)

mminfx=f2=13

Xét hàm số gx=-x2-4x

g'x=-2x-4<0 x2;3

Do đó hàm số đã cho luôn nghịch biến trên (2;3)

mmaxf(x) = f(2) =-12

-12m13

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B.

Số tiền ông A còn nợ ngân hàng sau lần trả thứ nhất:

(100 + 100. 0,01) – m = 100.1,01 – m  (triệu đồng)

Số tiền ông A còn nợ ngân hàng sau lần trả thứ hai:

(100 + 1,01 - m) .1,01 – m = 100.1,012 - (1,01 + 1) m   (triệu đồng)

Vì ông A đã hoàn cho ngân hàng toàn bộ số tiền nợ , sau lần trả thứ ba, nên

0 = [ 100.1,012 - (1,01 + 1)m] .1,01 - m= 100.1,013 - [ 1,012 + 1,01 + 1]m

Từ đó suy ra

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP