Bài 1: Hàm số lượng giác

  • 14099 lượt xem

  • 15 câu hỏi



Danh sách câu hỏi

Câu 1:

Sử dụng máy tính bỏ túi, hãy tính sinx, cosx với x là các số sau:

π/6; π/4; 1,5; 2; 3,1; 4,25; 5.

Xem đáp án »

sin π/6 = 1/2; cos π/6 = √3/2

sin π/4 = √2/2; cos π/4 = √2/2

sin⁡ 1,5 = 0,9975; cos⁡ 1,5 = 0,0707

sin⁡ 2 = 0,9093; cos⁡ 2 = -0,4161

sin⁡ 3,1 = 0,0416; cos⁡ 3,1 = -0,9991

sin⁡ 4,25 = -0,8950; cos⁡ 4,25 = -0,4461

sin⁡ 5 = -0,9589; cos⁡ 5 = 0,2837


Câu 5:

Hãy xác định giá trị của x trên đoạn [- π ; 3π/2] để hàm số y = tan x:

a. Nhận giá trị bằng 0

b. Nhận giá trị bằng 1

c. Nhận giá trị dương

d. Nhận giá trị âm

Xem đáp án »

Quan sát đồ thị hàm số y = tan x trên đoạn [-π; 3π/2].

Giải bài 1 trang 17 sgk Đại số 11 | Để học tốt Toán 11

a. tan x = 0 tại các giá trị x = -π; 0; π.

(Các điểm trục hoành cắt đồ thị hàm số y = tanx).

b. tan x = 1 tại các giá trị x = -3π/4; π/4; 5π/4.

Giải bài 1 trang 17 sgk Đại số 11 | Để học tốt Toán 11

c. tan x > 0 với x ∈ (-π; -π/2) ∪ (0; π/2) ∪ (π; 3π/2).

(Quan sát hình dưới)

Giải bài 1 trang 17 sgk Đại số 11 | Để học tốt Toán 11

d. tan x < 0 khi x ∈ [-π/2; 0) ∪ [π/2; π)

(Quan sát hình dưới).

Giải bài 1 trang 17 sgk Đại số 11 | Để học tốt Toán 11


Câu 6:

Tìm tập xác định của hàm số: y = 1 + cos xsin x

Xem đáp án »

Hàm số Giải bài 2 trang 17 sgk Đại số 11 | Để học tốt Toán 11 xác định

⇔ sin x ≠ 0

⇔ x ≠ k.π (k ∈ Z).

Tập xác định của hàm số là D = R \{kπ, k ∈ Z}.


Câu 7:

Tìm tập xác định của hàm số: y = 1 + cosx1 - cosx

Xem đáp án »

Hàm số Giải bài 2 trang 17 sgk Đại số 11 | Để học tốt Toán 11 xác định

Giải bài 2 trang 17 sgk Đại số 11 | Để học tốt Toán 11

Do đó (1) ⇔ 1 – cos x ≠ 0 ⇔ cos x ≠ 1 ⇔ x ≠ k.2π.

Vậy tập xác định của hàm số là D = R \ {k.2π, k ∈ Z}.


Câu 8:

Tìm tập xác định của hàm số: y = tanx - π3

Xem đáp án »

Hàm số Giải bài 2 trang 17 sgk Đại số 11 | Để học tốt Toán 11 xác định

Giải bài 2 trang 17 sgk Đại số 11 | Để học tốt Toán 11

Vậy tập xác định của hàm số là Giải bài 2 trang 17 sgk Đại số 11 | Để học tốt Toán 11


Câu 9:

Tìm tập xác định của hàm số: y = cotx + π6

Xem đáp án »

Hàm số Giải bài 2 trang 17 sgk Đại số 11 | Để học tốt Toán 11 xác định

Giải bài 2 trang 17 sgk Đại số 11 | Để học tốt Toán 11

Vậy tập xác định của hàm số là Giải bài 2 trang 17 sgk Đại số 11 | Để học tốt Toán 11


Câu 10:

Dựa vào đồ thị của hàm số y = sin x, vẽ đồ thị của hàm số y = |sin x|

Xem đáp án »

+ Đồ thị hàm số y = sin x.

Giải bài 3 trang 17 sgk Đại số 11 | Để học tốt Toán 11

+ Ta có:

Giải bài 3 trang 17 sgk Đại số 11 | Để học tốt Toán 11

Vậy từ đồ thị hàm số y = sin x ta có thể suy ra đồ thị hàm số y = |sin x| bằng cách:

- Giữ nguyên phần đồ thị nằm phía trên trục hoành (sin x > 0).

- Lấy đối xứng phần đồ thị nằm phía dưới trục hoành qua trục hoành.

Ta được đồ thị hàm số y = |sin x| là phần nét liền hình phía dưới.

Giải bài 3 trang 17 sgk Đại số 11 | Để học tốt Toán 11


Câu 11:

Chứng minh rằng sin 2(x + kπ) = sin 2x với mọi số nguyên k. Từ đó vẽ đồ thị hàm số y = sin 2x

Xem đáp án »

+ sin 2x (x + kπ) = sin (2x + k2π) = sin 2x, (k ∈ Z)

(Do hàm số y = sin x có chu kì 2π).

⇒ Hàm số y = sin 2x tuần hoàn với chu kì π.

+ Hàm số y = sin 2x là hàm số tuần hoàn với chu kì π và là hàm số lẻ.

Bảng biến thiên hàm số y = sin 2x trên [-π/2; π/2]

Giải bài 4 trang 17 sgk Đại số 11 | Để học tốt Toán 11

Đồ thị:

Giải bài 4 trang 17 sgk Đại số 11 | Để học tốt Toán 11

Đồ thị hàm số y = sin 2x.


Câu 12:

Dựa vào đồ thị hàm số y = cos x, tìm các giá trị của x để cos x = 1/2

Xem đáp án »

+ Vẽ đồ thị hàm số y = cos x.

+ Vẽ đường thẳng Giải bài 5 trang 18 sgk Đại số 11 | Để học tốt Toán 11

+ Xác định hoành độ các giao điểm.

Giải bài 5 trang 18 sgk Đại số 11 | Để học tốt Toán 11

Ta thấy đường thẳng Giải bài 5 trang 18 sgk Đại số 11 | Để học tốt Toán 11 cắt đồ thị hàm số y = cos x tại các điểm có hoành độ

Giải bài 5 trang 18 sgk Đại số 11 | Để học tốt Toán 11


Câu 13:

Dựa trên đồ thị hàm số y = sin x, tìm các khoảng giá trị của x để hàm số đó nhận giá trị dương.

Xem đáp án »

Đồ thị hàm số y = sin x:

Giải bài 6 trang 18 sgk Đại số 11 | Để học tốt Toán 11

Dựa vào đồ thị hàm số y = sin x ta thấy

y = sin x > 0

⇔ x ∈ (-2π; -π) ∪ (0; π) ∪ (2π; 3π) ∪…

hay x ∈ (k2π; π + k2π) với k ∈ Z.


Câu 14:

Tìm giá trị lớn nhất của hàm số: y = 2cosx + 1

Xem đáp án »

Ta có:

Giải bài 8 trang 18 sgk Đại số 11 | Để học tốt Toán 11

Vậy hàm số đạt giá trị lớn nhất bằng 3.


Câu 15:

Tìm giá trị lớn nhất của hàm số: y = 3 - 2sinx

Xem đáp án »

Ta có: -1 ≤ sin x ≤ 1

⇒ -2 ≤ -2sin x ≤ 2

⇒ 1 ≤ 3 – 2sin x ≤ 5

hay 1 ≤ y ≤ 5.

Vậy hàm số đạt giá trị lớn nhất bằng 5.


Đánh giá

5

Đánh giá trung bình

100%

0%

0%

0%

0%

Nhận xét

9 tháng trước

Tr Phuong Mai

Bình luận


Bình luận