Câu hỏi:

16/09/2022 318

Cho x thỏa mãn phương trình sin2x+sinxcosx=1.  Giá trị lớn nhất tìm được của  sinxπ4

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương trình sin2x+sinxcosx=1  có nghĩa xD=.

Ta có sin2x+sinxcosx=1sinxcosx+2sinxcosx1=0.    1

Đặt t=sinxcosx,t2.  Ta có sinxcosx=1t22

 1t+1t21=0t2t=0t=1t=0.

Với t=1,  ta có t=sinxcosx=2sinxπ4=1sinxπ4=22.

Với t=0,  ta có t=sinxcosx=2sinxπ4=0sinxπ4=0.

Vậy giá trị lớn nhất của sinxπ4=22.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Phương trình sin3x+cos3x+1=32sin2x  có nghĩa xD=.

Ta có sin3x+cos3x+1=32sin2xsinx+cosxsin2x+sinxcosx+cos2x+1=3sinxcosx

sinx+cosx1+sinxcosx+1=3sinxcosx.       1

Đặt t=sinx+cosx,t2.

Ta có sinxcosx=t2121t1+t212+1=3t212t33t2+t+5=0t=1.

Với t=1,  ta có t=sinx+cosx=2cosxπ4=1cosxπ4=22cosx+π4=±22.

Lời giải

Đáp án D

Phương trình 1+sinx1+cosx=2  có nghĩa xD=.

Ta có 1+sinx1+cosx=2cosx+sinx+sinxcosx=1.

Đặt t=sinx+cosx,t2.

Ta có sinxcosx=t2121t2+2t3=0t=1t=3.

Do  t2 nên t=1.

Với t=1,  ta có t=sinx+cosx=2cosxπ4=1cosxπ4=22.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP