Câu hỏi:

30/10/2022 533

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A. Cạnh bên SA vuông góc mặt phẳng đáy và SA=a2.  Biết AB=2AD=2DC=2a.  Góc giữa hai mặt phẳng (SAB) và (SBC) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án A

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A. Cạnh bên SA vuông góc mặt phẳng (ảnh 1)

Gọi M là trung điểm của AB.

Ta có tứ giác ADCM là hình vuông và CMSAB . Trong (SAB) kẻ MKSB  tại K.

Khi đó, ta có SBCMK  nên SAB;SBC^=MKC^.

Từ ΔBMKΔBSA  ta suy ra MK=SA.BMSBMK=13

Trong MKC vuông tại M có tanMKC^=MCMK=3.

Suy ra MKC^=π3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn đáp án C.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, SA = a và SA vuông góc (ABC), AB = BC = a (ảnh 1)

Ta có SACSBC=SC.

Gọi F là trung điểm AC thì BFSAC.

Dựng BKSC  tại KSCBKFSAC,SBC^=KB,KF^=BKF^.

Dễ thấy ΔCFKΔCSAFKFC=SASCFK=FC.SASC=a22.aa3=a6.

BFK vuông tại F có tanBKF^=FBFK=a22a6=3BKF^=60o.

Vậy góc giữa hai mặt phẳng (SAC) và (SBC) bằng 60°.

Lời giải

Chọn đáp án A.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt (ảnh 1)

Gọi H, K là trung điểm của AB, CD.

Do SABABCD  nên SH là đường cao của hình chóp.

Ta có  HKAB,HKSHHKSAB1

Dựng HISKHISCD2.

Từ (1) và (2) ta có góc hợp bởi hai mặt phẳng (SAB) và (SCD) là HK,HI=IHK^.

Ta có SH=a32;HK=a.

1HI2=1SH2+1HK2HI=a32.a34a2+a2=217.

Vây cosIHK^=HIHK=217.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho hình chóp S.ABC SAABC và đáy ABC vuông ở A. Khẳng định nào sau đây sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay