Khẳng định nào dưới đây là sai khi nói về hàm số (với )
A. Trên tập xác định, hàm số đồng biến nếu a > 1, nghịch biến nếu 0 < a < 1
B. Đồ thị hàm số có một tiệm cận đứng và không có tiệm cận ngang
C. Tập xác định của hàm số là R
D. Đồ thị hàm số luôn nằm bên phải trục tung
Quảng cáo
Trả lời:

Hàm số
+ TXĐ: nên C sai
+ Đồng biến trên nếu a > 1 và nghịch biến trên nếu 0<a<1nên A đúng.
+ Đồ thị hàm số có một tiệm cận đứng là x = 0 và không có tiệm cận ngang nên B đúng.
+ Đồ thị hàm số luôn nằm bên phải trục tung nên D đúng.
Đáp án cần chọn là: C.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Áp dụng công thức , ta có
Đáp án cần chọn là: B.
Lời giải
Đáp án cần chọn là: A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Hàm số đã cho đồng biến trên khoảng
B. Hàm số đã cho đồng biến trên các khoảng và
C. Hàm số đã cho đồng biến trên khoảng
D. Hàm số đã cho đồng biến trên khoảng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.