Câu hỏi:

30/03/2021 279

Cho a là một số thực dương khác 1 và các mệnh đề sau:

Hàm số y=lnx là hàm nghịch biến trên 0;+

Trên khoảng (1;3) hàm số y=log12x nghịch biến

Nếu M>N>0 thì logaM>logaN

Nếu loga3<00<a<1

Hỏi có bao nhiêu mệnh đề đúng?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì cơ số e>1y=lnx đồng biến trên 0;+. Do đó 1) sai.

Hàm số y=log12x có cơ số a=120;1 nên nghịch biến trên R, suy ra nghịch biến trên khoảng (1;3). Do đó 2) đúng.

Nếu cơ số a0;1y=logax nghịch biến. Vì vậy với M>N>0 thì logaM>logaN. Do đó 3) sai.

Ta có loga3<0loga3<loga10<a<1. Do đó 4) đúng

Vậy có 2) và 4) đúng.

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính đạo hàm của hàm số y=13x

Xem đáp án » 27/03/2021 25,624

Câu 2:

Cho hàm số y=2x2-3x có đạo hàm là:

Xem đáp án » 30/03/2021 21,526

Câu 3:

Tính đạo hàm hàm số y=ln1+x+1

Xem đáp án » 30/03/2021 19,513

Câu 4:

Cho hàm số y=x.e-x. Mệnh đề nào sau đây đúng?

Xem đáp án » 27/03/2021 11,021

Câu 5:

Cho hàm số y=log123x3-3x2+2. Mệnh đề nào sau đây đúng?

Xem đáp án » 29/03/2021 7,770

Câu 6:

Tính đạo hàm của hàm số y=ln2lnx tại điểm x = e.

Xem đáp án » 30/03/2021 6,255

Câu 7:

Cho hai hàm số y=f(x)=logax và y=g(x)=ax0<a1. Xét các mệnh đề sau:

Đồ thị của hai hàm số f (x) và g (x) luôn cắt nhau tại một điểm.

Hàm số f(x)+g(x) đồng biến khi a > 1, nghịch biến khi 0<a<1

Đồ thị hàm số f (x) nhận trục Oy làm tiệm cận.

Chỉ có đồ thị hàm số f (x) có tiệm cận.

Hỏi có tất cả bao nhiêu mệnh đề đúng?

Xem đáp án » 29/03/2021 4,968

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store