Thi Online Trắc nghiệm Toán 7 Bài tập cuối chương 6 có đáp án
Trắc nghiệm Toán 7 Bài tập cuối chương 6 có đáp án
-
314 lượt thi
-
31 câu hỏi
-
30 phút
Câu 1:
Các số x, y thoả mãn 3x = 4y và 2x + y = 20 lần lượt là:
Các số x, y thoả mãn 3x = 4y và 2x + y = 20 lần lượt là:
Đáp án đúng là: A
Ta có 3x = 4y suy ra \(\frac{x}{4} = \frac{y}{3}\).
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4} = \frac{y}{3} = \frac{{2x - y}}{{2.4 - 3}} = \frac{{20}}{5} = 4\).
Suy ra x = 4 . 4 = 16; y = 3 . 4 = 12.
Vậy x = 16; y = 12.
Chọn đáp án A.
Câu 2:
Cho tỉ lệ thức \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\) và x + y – z = 4. Giá trị của x, y, z lần lượt là:
Cho tỉ lệ thức \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\) và x + y – z = 4. Giá trị của x, y, z lần lượt là:
Đáp án đúng là: B
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y - z}}{{3 + 4 - 5}} = \frac{4}{2} = 2\).
Suy ra x = 3 . 2 = 6; y = 4 . 2 = 8; z = 5 . 2 = 10.
Vậy x = 6; y = 8; z = 10.
Chọn đáp án B.
Câu 3:
Cho tỉ lệ thức x : y : z = 1 : 3 : 4 và 2x + 3y – 2z = −6. Giá trị của x – 2y là:
Cho tỉ lệ thức x : y : z = 1 : 3 : 4 và 2x + 3y – 2z = −6. Giá trị của x – 2y là:
Đáp án đúng là: B
Theo bài ra x : y : z = 1 : 3 : 4 nên \(\frac{x}{1} = \frac{y}{3} = \frac{z}{4}\).
Ta có \(\frac{x}{1} = \frac{{2x}}{2};\frac{y}{3} = \frac{{3z}}{9};\frac{z}{4} = \frac{{2z}}{8}\).
Suy ra \(\frac{x}{1} = \frac{y}{3} = \frac{z}{4} = \frac{{2x}}{2} = \frac{{3y}}{9} = \frac{{2z}}{8}\).
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{1} = \frac{y}{3} = \frac{z}{4} = \frac{{2x}}{2} = \frac{{3y}}{9} = \frac{{2z}}{8} = \frac{{2x + 3y - 2z}}{{2 + 9 - 8}} = \frac{{ - 6}}{3} = - 2\).
Suy ra x = 1 . (−2) = −2; y = 3 . (−2) = −6.
Do đó: x – 2y = – 2 – 2.(– 6) = 10.
Vậy x − 2y = 10.
Chọn đáp án B.
Câu 4:
Cho tỉ lệ thức 2x = 3y = 4z và x – y + z = −10. Giá trị của x, y, z lần lượt là:
Cho tỉ lệ thức 2x = 3y = 4z và x – y + z = −10. Giá trị của x, y, z lần lượt là:
Đáp án đúng là: A.
Theo bài ra 2x = 3y = 4z.
BCNN(2, 3, 4) = 12.
Ta có 2x = 3y = 4z nên \(\frac{{2x}}{{12}} = \frac{{3y}}{{12}} = \frac{{4z}}{{12}}\).
Suy ra \(\frac{x}{6} = \frac{y}{4} = \frac{z}{3}\).
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{6} = \frac{y}{4} = \frac{z}{3} = \frac{{x - y + z}}{{6 - 4 + 3}} = \frac{{ - 10}}{5} = - 2\).
Suy ra x = 6 . (−2) = −12; y = 4 . (−2) = −8; z = 3 . (−2) = −6.
Vậy x = −12; y = −8; z = −6.
Chọn đáp án A.
Câu 5:
Cho tỉ lệ thức \(\frac{x}{2} = \frac{y}{3};\frac{y}{4} = \frac{z}{5}\) và 2z – 3x = 18. Giá trị của z là:
Cho tỉ lệ thức \(\frac{x}{2} = \frac{y}{3};\frac{y}{4} = \frac{z}{5}\) và 2z – 3x = 18. Giá trị của z là:
Đáp án đúng là: D
Theo bài ra \(\frac{x}{2} = \frac{y}{3};\frac{y}{4} = \frac{z}{5}\).
BCNN(3, 4) = 12
Với \(\frac{x}{2} = \frac{y}{3}\) suy ra \(\frac{x}{8} = \frac{y}{{12}}\).
Với \(\frac{y}{4} = \frac{z}{5}\) suy ra \(\frac{y}{{12}} = \frac{z}{{15}}\).
Do đó \(\frac{x}{8} = \frac{y}{{12}} = \frac{z}{{15}} = \frac{{3x}}{{24}} = \frac{{2z}}{{30}}\).
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8} = \frac{y}{{12}} = \frac{z}{{15}} = \frac{{3x}}{{24}} = \frac{{2z}}{{30}} = \frac{{2z - 3x}}{{30 - 24}} = \frac{{18}}{6} = 3\)
Suy ra z = 15 . 3 = 45.
Vậy z = 45.
Chọn đáp án D.
Có thể bạn quan tâm
Các bài thi hot trong chương
Đánh giá trung bình
0%
0%
0%
0%
0%