Câu hỏi:

06/12/2022 5,364

Xét các số thực dương a,  b,  x,  y  thỏa mãn a>1,  b>1  ax=by=ab . Giá trị nhỏ nhất của biểu thức P=x+2y  thuộc tập hợp nào dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Ta có a,  b>1  x,  y>0  nên   ax;by;ab>1

Do đó: ax=by=ablogaax=logaby=logaabx=12+12logab2y=1+logba  .

Khi đó, ta có: P=32+12logab+logba .

Lại do a,  b>1  nên logab,  logba>0 .

Suy ra P32+212logab.logba=32+2 , P=32+2logab=2 .

Lưu ý rằng, luôn tồn tại a,  b>1  thỏa mãn logab=2 .

Vậy minP=32+252;  3 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn C

logx1x10.

Vậy tập nghiệm của bất phương trình là 10;+ .

Lời giải

Chọn C

Ta có   log2a2log4b=4

log2a2log22b=4log2a2.12log2b=4log2alog2b=4log2ab=4ab=24a=16b   

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP