Câu hỏi:

06/12/2022 24,055

Cho phương trình log222xm+2log2x+m2=0  (m là tham số thực). Tập hợp tất cả các giá trị của m để phương trình đã cho có hai nghiệm phân biệt thuộc đoạn 1;2 .

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Điều kiện: x>0  .

pt1+log2x2m+2log2x+m2=0

log22xmlog2x+m1=0log2x=1log2x=m1

Ta có: x1;2log2x0;1.

Vậy để phương trình đã cho có 2 nghiệm phân biệt thuộc đoạn 1;2  khi và chỉ khi 0m1<11m<2.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Với a,b  là các số thực dương tùy ý thỏa mãn log2a2log4b=4 , mệnh đề nào dưới đây đúng?

Xem đáp án » 06/12/2022 53,935

Câu 2:

Xét tất cả các số dương ab thỏa mãn log2a=log8ab . Mệnh đề nào dưới đây đúng?

Xem đáp án » 06/12/2022 44,092

Câu 3:

Tập nghiệm của bất phương trình logx1  

Xem đáp án » 06/12/2022 43,562

Câu 4:

Cho a và b là hai số thực dương thỏa mãn 9log3(ab)=4a . Giá trị của ab2  bằng

Xem đáp án » 06/12/2022 43,279

Câu 5:

Với a,b  là các số thực dương tùy ý thỏa mãn log3a2log9b=3 , mệnh đề nào dưới đây đúng?

Xem đáp án » 05/12/2022 39,635

Câu 6:

Tập nghiệm của bất phương trình log336x23  

Xem đáp án » 05/12/2022 30,862

Câu 7:

Với a là số thực dương tùy ý, ln5aln3a  bằng

Xem đáp án » 06/12/2022 30,499
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua