Câu hỏi:

02/04/2021 458

Cho hàm số f(x)=log2cosx. Phương trình f'(x)=0 có bao nhiêu nghiệm trong khoảng 0;2020π

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

ĐKXĐ: cosx>0

Ta có:

Với k chẵn, đặt , khi đó ta có 

Với k lẻ, đặt , khi đó ta có 

Kiểm tra ĐKXĐ:

: thỏa mãn

 loại.

Suy ra nghiệm của phương trình là: 

Theo bài ra ta có:

=> có 1009 giá trị nguyên của m thỏa mãn.

Vậy phương trình f'(x)=0 có 1009 nghiệm khoảng 0;2020π

Đáp án cần chọn là: B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính tổng tất cả các nghiệm thực của phương trình log3x-2+log3(x-4)2=0

Xem đáp án » 02/04/2021 34,544

Câu 2:

Cho 4x+4-x=7. Khi đó biểu thức P=5-2x-2-x8+4.2x+4.2-x=ab với ab tối giản và a,bZ. Tích a.b có giá trị bằng:

Xem đáp án » 01/04/2021 33,626

Câu 3:

Tích các nghiệm của phương trình 3+5x+3-5x=3.2x là:

Xem đáp án » 31/03/2021 13,017

Câu 4:

Hỏi có bao nhiêu giá trị m nguyên trong đoạn -2017;2017 để phương trình logmx=2logx+1 có nghiệm duy nhất?

Xem đáp án » 02/04/2021 11,951

Câu 5:

Cho các số thực a, b, c thuộc khoảng 1;+ và thỏa mãn loga2b+logbc.logbc2b +9logac=4logab. Giá trị của biểu thức logab+logbc2 bằng:

Xem đáp án » 02/04/2021 11,724

Câu 6:

Cho x, y là các số thực dương thỏa mãn log23x+3y+4x2+y2 =(x+y-1)(2x+2y-1)-4(xy-1). Giá trị lớn nhất của biểu thức P=5x+3y-22x+y+1 bằng:

Xem đáp án » 02/04/2021 10,574

Câu 7:

Cho phương trình log22x-5m+1log2x+4m2+m=0. Biết phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn x1+x2=165. Giá trị của x1-x2 bằng:

Xem đáp án » 02/04/2021 7,430

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store