Dạng 1: Thể tích khối chóp, khối chóp cụt đều có đáp án

  • 165 lượt thi

  • 10 câu hỏi

  • 60 phút

Câu 1:

Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4, AB = 6, BC = 10 và CA = 8. Tính thể tích V của khối chóp S.ABC.

Xem đáp án

Đáp án đúng là: C

Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4, AB = 6, BC = 10 và CA = 8. Tính thể tích V của khối chóp S.ABC.  (ảnh 1)

Vì AB2 + AC2 = BC2 (62 + 82 = 102) nên DABC vuông tại A.

Khi đó SABC=12AB.AC=12.6.8=24  .

Do đó VS.ABC=13SA.SABC=13.4.24=32 .


Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh AB = a, BC = 2a. Hai mặt bên (SAB) và (SAD) cùng vuông góc với mặt phẳng đáy, cạnh SA=a15 . Tính theo a thể tích V của khối chóp S.ABCD.

Xem đáp án

Đáp án đúng là: B

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh AB = a, BC = 2a. Hai mặt bên (SAB) (ảnh 1)

Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra SA ^ (ABCD). Do đó chiều cao khối chóp là SA=a15 .

Diện tích hình chữ nhật ABCD là SABCD = AB.BC = 2a2.

Vậy thể tích khối chóp  VS.ABCD=13SABCD.SA=2a3153.


Câu 3:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A và có AB = a, BC=a3  . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Tính theo a thể tích V của khối chóp S.ABC.

Xem đáp án

Đáp án đúng là: A

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A và có AB = a, (ảnh 1)

Gọi H là trung điểm của AB, suy ra SH ^ AB (do DSAB đều).

Do (SAB) ^ (ABC) theo giao tuyến AB nên SH ^ (ABC).

Tam giác SAB là đều cạnh a nên SH=a32 .

Tam giác vuông ABC, có AC=BC2AB2=a2 .

Diện tích tam giác vuông SΔABC=12AB.AC=a222 .

Vậy VS.ABC=13SΔABC.SH=13.a222.a32=a3612  .


Câu 4:

Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy, SA = 2a. Tính theo a thể tích V của khối chóp S.ABCD.

Xem đáp án

Đáp án đúng là: B

Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy (ảnh 1)

Gọi I là trung điểm của AB.

Tam giác SAB cân tại S và có I là trung điểm AB nên SI ^ AB.

Do (SAB) ^ (ABCD) theo giao tuyến AB nên SI ^ (ABCD).

Tam giác vuông SIA, có

SI=SA2IA2=SA2AB22=a152

Diện tích hình vuông ABCD là SABCD = a2.

Vậy VS.ABCD=13SABCD.SI=a3156.


Câu 5:

Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên gấp hai lần cạnh đáy. Tính thể tích V của khối chóp đã cho.

Xem đáp án

Đáp án đúng là: B

Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên gấp hai lần cạnh đáy. Tính thể tích V của khối chóp đã cho. (ảnh 1)

Gọi I là tâm đường tròn ngoại tiếp tam giác ABC.

Vì S.ABC là khối chóp đều nên suy ra SI ^ (ABC).

Gọi M là trung điểm của BC.

DABC đều nên AM=a32  AI=23AM=a33.

Tam giác SAI vuông tại I, có SI=SA2SI2=2a2a332=a333.

Diện tích tam giác ABC là SΔABC=a234.

Vậy thể tích khối chóp VS.ABC=13SΔABC.SI=11a312.


0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận