Danh sách câu hỏi
Có 27,889 câu hỏi trên 558 trang
Tìm các giá trị của a để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x + 1\,\,\,\,\,n\^e 'u\,\,x \le a\\{x^2}\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,x > a\end{array} \right.\) liên tục trên ℝ.
Lực hấp dẫn tác dụng lên một đơn vị khối lượng ở khoảng cách r tính từ tâm Trái Đất là
\(F\left( r \right) = \left\{ \begin{array}{l}\frac{{GMr}}{{{R^3}}}\,\,\,\,n\^e 'u\,\,\,r < R\\\frac{{GM}}{{{r^2}}}\,\,\,\,\,\,n\^e 'u\,\,\,r \ge R,\end{array} \right.\)
trong đó M và R lần lượt là khối lượng và bán kính của Trái Đất, G là hằng số hấp dẫn. Xét tính liên tục của hàm số F(r).
Giải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho.
a) \(f\left( x \right) = \left\{ \begin{array}{l}\frac{1}{x}\,\,\,n\^e 'u\,\,x \ne 0\\1\,\,\,\,\,\,n\^e 'u\,\,x = 0\end{array} \right.\) tại điểm x = 0;
b) \(g\left( x \right) = \left\{ \begin{array}{l}1 + x\,\,\,n\^e 'u\,\,x < 1\\2 - x\,\,\,n\^e 'u\,\,x \ge 1\end{array} \right.\) tại điểm x = 1.
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} + x - 2}}{{x - 1}}\,\,\,\,n\^e 'u\,\,\,x \ne 1\\a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,\,x = 1\end{array} \right..\) Hàm số f(x) liên tục tại x = 1 khi
A. a = 0.
B. a = 3.
C. a = – 1.
D. a = 1.
Tìm giá trị của tham số m để hàm số
\(f\left( x \right) = \left\{ \begin{array}{l}\sin \,x\,\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,x \ge 0\\ - x + m\,\,\,\,\,\,n\^e 'u\,\,x < 0\end{array} \right.\)
liên tục trên ℝ.
Xét tính liên tục của các hàm số sau trên tập xác định của chúng:
a) \(f\left( x \right) = \frac{x}{{{x^2} + 5x + 6}}\);
b) \(f\left( x \right) = \left\{ \begin{array}{l}1 + {x^2}\,\,n\^e 'u\,\,x < 1\\4 - x\,\,\,\,n\^e 'u\,\,x \ge 1\end{array} \right.\).
Cho hai hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2x\,\,\,n\^e 'u\,\,0 \le x \le \frac{1}{2}\\1\,\,\,\,\,\,\,\,n\^e 'u\,\,\,\frac{1}{2} < x \le 1\end{array} \right.\) và \(g\left( x \right) = \left\{ \begin{array}{l}x\,\,\,n\^e 'u\,\,0 \le x \le \frac{1}{2}\\1\,\,\,\,n\^e 'u\,\,\frac{1}{2} < x \le 1\end{array} \right.\) với đồ thị tương ứng như Hình 5.7.
Xét tính liên tục của các hàm số f(x) và g(x) tại điểm \(x = \frac{1}{2}\) và nhận xét về sự khác nhau giữa hai đồ thị.
Xét tính liên tục của hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - x\,\,\,\,n\^e 'u\,\,x < 0\\0\,\,\,\,\,\,\,\,n\^e 'u\,\,x = 0\\{x^2}\,\,\,\,\,n\^e 'u\,\,x > 0\end{array} \right.\) tại điểm x0 = 0.
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}}\,\,\,\,\,\,n\^e 'u\,\,\,\,\,x \ne 1\\2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,\,\,\,x = 1.\end{array} \right.\)
Tìm giới hạn \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) và so sánh giá trị này với f(1).
Cho hàm số \(H\left( t \right) = \left\{ \begin{array}{l}0\,\,\,n\^e 'u\,\,t < 0\\1\,\,\,\,n\^e 'u\,\,t \ge 0\end{array} \right.\) (hàm Heaviside, thường được dùng để mô tả việc chuyển trạng thái tắt/mở của dòng điện tại thời điểm t = 0).
Tính \(\mathop {\lim }\limits_{t \to {0^ + }} H\left( t \right)\) và \(\mathop {\lim }\limits_{t \to {0^ - }} H\left( t \right)\).
Cho hàm số \[f\left( x \right) = \left\{ \begin{array}{l} - x\,\,\,\,\,\,\,n\^e 'u\,\,\,\,x < 0\\\sqrt x \,\,\,\,\,\,n\^e 'u\,\,\,\,x \ge 0.\end{array} \right.\]
Tính \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\), \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to 0} f\left( x \right)\).