7 câu Trắc nghiệm Đường vuông góc và đường xiên có đáp án (Thông hiểu)
25 người thi tuần này 4.6 1.5 K lượt thi 7 câu hỏi 30 phút
🔥 Đề thi HOT:
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 02
15 câu Trắc nghiệm Toán 7 Cánh diều Bài 1: Tập hợp Q các số hữu tỉ có đáp án
Bộ 15 đề thi Học kì 2 Toán 7 có đáp án (Mới nhất) - đề 2
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: D

Ta có: BC là cạnh đối diện của \(\widehat {\rm{A}}\) (1)
AC là cạnh đối diện của \(\widehat {\rm{B}}\) (2)
Vì 80° > 60° nên \(\widehat {\rm{A}} > \widehat {\rm{B}}\) (3)
Từ (1); (2) và (3) suy ra BC > AC (quan hệ giữa cạnh và góc trong tam giác).
Vậy ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A

Xét ∆DEF có: \(\widehat {\rm{D}} + \widehat {\rm{E}} + \widehat {\rm{F}} = 180^\circ \) (tổng ba góc trong tam giác bằng 180°)
Hay \(38^\circ + 110^\circ + \widehat {\rm{F}} = 180^\circ \)
Suy ra \(\widehat {\rm{F}} = 180^\circ - 110^\circ - 38^\circ = 32^\circ \)
Vì \(32^\circ < 38^\circ < 110^\circ \) suy ra \(\widehat {\rm{F}} < \widehat {\rm{D}} < \widehat {\rm{E}}\) (1)
Ta lại có DE; EF; DF lần lượt là các cạnh đối diện của \(\widehat {\rm{F}};{\rm{ }}\widehat {\rm{D}};{\rm{ }}\widehat {\rm{E}}\) (2)
Từ (1) và (2) suy ra DE < EF < DF (quan hệ giữa cạnh và góc trong một tam giác).
Do đó độ dài các cạnh của ∆DEF sắp xếp theo thứ tự tăng dần là: DE; EF; DF.
Vậy ta chọn phương án A.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta có \(\widehat {\rm{A}};{\rm{ }}\widehat {\rm{B}};{\rm{ }}\widehat {\rm{C}}\) lần lượt là các góc đối diện của các cạnh BC; AC; AB.
Mà AB < BC < AC (do 5 cm < 9 cm < 13 cm).
Suy ra \(\widehat C < \widehat {\rm{A}} < \widehat B\) (quan hệ giữa cạnh và góc trong một tam giác).
Do đó các góc của ∆ABC sắp xếp theo thứ tự giảm dần là: \(\widehat {\rm{B}};{\rm{ }}\widehat {\rm{A}};{\rm{ }}\widehat {\rm{C}}\).
Vậy ta chọn phương án B.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B

Do chu vi ∆ABC bằng 25 cm nên AB + AC + BC = 25 (cm).
Hay AB + AC + 9 = 25
Suy ra AB + AC = 25 – 9 = 16 (1)
Ta lại có AB = AC (do DABC cân tại A) (2)
Từ (1) và (2) suy ra AB = AC = \(\frac{{16}}{2} = 8\) (cm).
Ta có AB; AC; BC lần lượt là cạnh đối diện của \(\widehat {\rm{C}}{\rm{; }}\widehat {\rm{B}}{\rm{; }}\widehat {\rm{A}}\).
Mà DABC cân tại A suy ra \(\widehat {\rm{B}} = \widehat {\rm{C}}\), do đó C đúng.
AB < BC suy ra \(\widehat {\rm{C}} < \widehat {\rm{A}}\) (quan hệ giữa cạnh và góc trong tam giác), do đó D đúng, B sai
AC < BC suy ra \(\widehat {\rm{B}} < \widehat {\rm{A}}\)(quan hệ giữa cạnh và góc trong tam giác), do đó A đúng.
Vậy ta chọn phương án B.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Vì OB là đường vuông góc kẻ từ điểm O đến đường thẳng a;
OA, OC là các đường xiên kẻ từ O đến đường thẳng a.
Nên OB < OA; OB < OC (1)
Xét ∆OAC có \(\widehat {\rm{A}} > \widehat {\rm{C}}\) (vì 65° > 30°)
Suy ra: OC > OA (quan hệ giữa góc và cạnh đối diện trong tam giác) (2)
Từ (1) và (2) suy ra: OB < OA < OC.
Vậy ta chọn phương án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.