Bộ 12 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 08
5 người thi tuần này 4.6 5.7 K lượt thi 5 câu hỏi 45 phút
🔥 Đề thi HOT:
Bộ 12 Đề thi học kì 2 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Cánh diều Bài 1: Tập hợp Q các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Chân trời sáng tạo Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 10 đề thi giữa kì 1 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
Bộ 12 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 04
5 câu Trắc nghiệm Tập hợp các số hữu tỉ có đáp án (Nhận biết)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
1.1.
a) \(\frac{5}{{ - 3}} = \frac{x}{9}\) \( - 3x = 5.9\) \( - 3x = 45\) \(x = 45:\left( { - 3} \right)\) \(x = - 15\) Vậy \(x = - 15\). |
b) \(\frac{{x - 3}}{7} = \frac{3}{{10}}\) \(10\left( {x - 3} \right) = 3.7\) \(10x - 30 = 21\) \(10x = 51\) \(x = \frac{{51}}{{10}}\) Vậy \(x = \frac{{51}}{{10}}\). |
1.2. Gọi số tiền lãi ba công ty \(A,B,C\) nhận được lần lượt là \[x,y,z\] (triệu đồng).
Do số tiền lãi nhận được chia theo tỉ lệ góp vốn mà số tiền góp vốn của ba công ty \(A,B,C\) lần lượt tỉ lệ với ba số \[7;9;8\] nên \(\frac{x}{7} = \frac{y}{9} = \frac{z}{8}\).
Tổng số tiền lãi ba công ty có là \[1,2\] tỉ đồng (1 200 triệu đồng) nên \(x + y + z = 1\,\,200\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7} = \frac{y}{9} = \frac{z}{8} = \frac{{x + y + z}}{{7 + 9 + 8}} = \frac{{1200}}{{24}} = 50\)
Suy ra \[\left\{ \begin{array}{l}x = 7.50 = 350\\y = 9.50 = 450\\z = 8.50 = 400\end{array} \right.\]
Vậy số tiền lãi ba công ty \(A,B,C\) nhận được lần lượt là 350 triệu đồng, 450 triệu đồng, 400 triệu đồng.
Lời giải
2.1. Thay \[x = - 4\] và \[y = 2\] vào biểu thức \[A = 2x + 3{y^2} - 12\], ta được:
\[A = 2.\left( { - 4} \right) + {3.2^2} - 12 = - 8\].
Vậy \[A = - 8\].
2.2. a) \(M\left( x \right) = 2{x^4} - 3{x^3} - x + 7{x^3} - 5x + 1\)
\[ = 2{x^4} + \left( { - 3{x^3} + 7{x^3}} \right) + \left( { - x - 5x} \right) + 1\]
\[ = 2{x^4} + 4{x^3} - 6x + 1\].
\(N\left( x \right) = - 2{x^3} + {x^2} + 3{x^4} + 5x - 2{x^4} - 6 + x\)
\( = \left( {3{x^4} - 2{x^4}} \right) - 2{x^3} + {x^2} + \left( {5x + x} \right) - 6\)
\( = {x^4} - 2{x^3} + {x^2} + 6x - 6\)
b) Đa thức \(N\left( x \right)\) có bậc là 4, hệ số cao nhất là 1.
c) Ta có \[M\left( 1 \right) = {2.1^4} + {4.1^3} - 6.1 + 1 = 1\].
\(N\left( { - 1} \right) = {\left( { - 1} \right)^4} - 2.{\left( { - 1} \right)^3} + {\left( { - 1} \right)^2} + 6.\left( { - 1} \right) - 6 = - 8\)
Do đó \(8M\left( 1 \right) + N\left( { - 1} \right) = 8.1 + \left( { - 8} \right) = 0\).
d) Ta có \(Q\left( x \right) = M\left( x \right) + N\left( x \right)\)
\(Q\left( x \right) = \left( {2{x^4} + 4{x^3} - 6x + 1} \right) + \left( {{x^4} - 2{x^3} + {x^2} + 6x - 6} \right)\)
\( = 2{x^4} + 4{x^3} - 6x + 1 + {x^4} - 2{x^3} + {x^2} + 6x - 6\)
\( = 3{x^4} + 2{x^3} + {x^2} - 5\).
Ta có \(Q\left( x \right) = 3{x^4} + 2{x^3} + 4\)
Suy ra \(3{x^4} + 2{x^3} + {x^2} - 5 = 3{x^4} + 2{x^3} + 4\)
\({x^2} = 9\)
\(x = 3\) hoặc \(x = - 3\).
Vậy \(x \in \left\{ { - 3;3} \right\}\) thì \(Q\left( x \right) = 3{x^4} + 2{x^3} + 4\).
Lời giải
a) Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra là:
\(A = \left\{ {1;2;3;4;.....,;27;28} \right\}\).
Vậy có \(28\) phần tử
b) Kết quả thuận lợi của biến cố \(B\) là: \(5;10;15;20;25\).
Do đó, có 5 kết quả thuận lợi cho biến cố này.
Xác suất của biến cố trên là \(\frac{5}{{28}}.\)
c) Kết quả thuận lợi cho biến cố \(C\) là: \(11;21\).
Do đó, có 2 kết quả thuận lợi cho biến cố này.
Xác suất của biến cố \(C\) là \(\frac{2}{{28}} = \frac{1}{{14}}.\)
Lời giải
![Cho tam giác \[ABC\] vuông tại \(A\) có \(\widehat B = 60^\circ \), đường cao \(AH\). Trên tia đối của tia \(HB\) lấy điểm \(M\) sao cho \(HM = HB\). a) Chứng minh rằng \(HB < HC\). b) Chứng minh rằng \(\Delta AHB = \Delta AHM\). Từ đó suy ra \(\Delta ABM\) là tam giác đều. c) Gọi \(N\) là trung điểm của \(AC\) và \(O\) là giao điểm của \(AM\) và \(BN\). Biết \(AB = 6\,\,{\rm{cm}}{\rm{,}}\) tính độ dài đoạn thẳng \(AO\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/06/blobid0-1751275555.png)
a) Xét \(\Delta ABC\) vuông tại \(A\) có \(\widehat B = 60^\circ \)
Suy ra \(\widehat C = 90^\circ - \widehat B = 30^\circ \).
Do đó \(\widehat C < \widehat B\) nên \(AB < AC\) nên \(M\) nằm giữa \(H\) và \(C\)
Hay \(HM < HC\)
Mà \(HM = HB\), suy ra \(HB < HC\).
b) Xét \(\Delta AHB\) và \(\Delta AHM\) có:
\(\widehat {AHB} = \widehat {AHM} = 90^\circ \);
\(AH\) là cạnh chung;
\(HM = HB\) (giả thiết).
Do đó \(\Delta AHB = \Delta AHM\) (hai cạnh góc vuông)
Suy ra \(AB = AM\) (hai cạnh tương ứng)
\(\Delta ABM\) có \(AB = AM\) nên là tam giác cân tại \(A\).
Lại có \(\widehat B = 60^\circ \) (giả thiết) nên \(\Delta ABM\) là tam giác đều.
c) Do \(\Delta ABM\) là tam giác đều nên \(\widehat {MAB} = 60^\circ \).
Suy ra \(\widehat {MAC} = 90^\circ - \widehat {MAB} = 90^\circ - 60^\circ = 30^\circ \)
Tam giác \(MAC\) có \(\widehat {MAC} = \widehat {MCA} = 30^\circ \) nên là tam giác cân tại \(M\).
Suy ra \(MA = MC\).
Lại có \(MA = MB\) (do \(\Delta ABM\) đều)
Do đó \(MB = MC\) hay \(M\) là trung điểm của \(BC\).
Xét \(\Delta ABC\) có \(AM,BN\) là hai đường trung tuyến của tam giác cắt nhau tại \(O\) nên \(O\) là trọng tâm của tam giác.
Suy ra \(AO = \frac{2}{3}AM = \frac{2}{3}AB = \frac{2}{3}.6 = 4\,\,\left( {{\rm{cm}}} \right)\).
Lời giải
Do mật khẩu là số có ba chữ số và các chữ số này đều là lẻ nên các số đó được tạo thành từ bộ số \(\left\{ {1;3;5;7;9} \right\}\).
Ta có \(5\) cách chọn chữ số hàng trăm;
\(5\) cách chọn chữ số hàng chục;
\(5\) cách chọn chữ số hàng đơn vị.
Từ đó, số kết quả có thể xảy ra là: \(5.5.5 = 125\).
Mà Nam chỉ bấm 1 lần nên khả năng xảy ra của mỗi biến cố là như nhau.
Do đó, xác suất để Nam bấm 1 lần mở được cửa là: \(\frac{1}{{125}}\).