Dạng 1: Xác định và tính góc giữa hai đường thẳng có đáp án

  • 225 lượt thi

  • 10 câu hỏi

  • 60 phút

Câu 1:

Cho hình hộp ABCD.A'B'C'D'. Giả sử tam giác AB'C và A'DC' đều có 3 góc nhọn. Góc giữa hai đường thẳng AC và A'D là góc nào sau đây?

Xem đáp án

Đáp án đúng là: D

Cho hình hộp ABCD.A'B'C'D'. Giả sử tam giác AB'C và A'DC' đều có 3 góc nhọn. Góc giữa hai đường thẳng AC và A'D là góc nào sau đây?  (ảnh 1)

 

Ta có: AC // A'C' (do ABCD.A'B'C'D') là hình hộp.

Do đó, (AC, A'D) = (A'C', A'D) = DA'C'^   (do giả thiết tam giác DA'C' nhọn).


Câu 2:

Cho tứ diện đều ABCD có tất cả các cạnh bằng nhau. Số đo góc giữa hai đường thẳng CD và AB là

Xem đáp án

Đáp án đúng là: D

Cho tứ diện đều ABCD có tất cả các cạnh bằng nhau. Số đo góc giữa hai đường thẳng CD và AB là (ảnh 1)

Gọi H là tâm đường tròn ngoại tiếp tam giác BCD

Do đó, AH vuông góc với (BCD).

ABCD là tứ diện đều tất cả các cạnh bằng nhau nên tam giác BCD đều.

Gọi E là trung điểm của CD ⇒ BE vuông góc với CD.

Do AH vuông góc với (BCD) nên AH vuông góc với CD.

Ta có: CDBECDAHCDABECDABAB,CD=90°  .

Câu 3:

Cho tứ diện đều ABCD, M là trung điểm của BC. Khi đó cos(AB, DM) bằng:

Xem đáp án

Đáp án đúng là: A

 

Không mất tính tổng quát, giả sử tứ diện ABCD có cạnh bằng a.

Gọi H là tâm đường tròn ngoại tiếp tam giác BCD nên AH vuông góc với (BCD).

Gọi E là trung điểm AC, ta có:

ME // AB (AB, DM) = (ME, MD) 

Ta có: cos(AB, DM) = cos(ME, MD) =cosME,MD=cosEMD^

Do các mặt của tứ diện đều là tam giác đều, từ đó ta dễ dàng tính được độ dài các cạnh của tam giác MED: ME = a2 ; ED = MD =a32 .

Xét tam giác MED, ta có:

cosEMD^=ME2+MD2ED22ME.MD=a22+a322a3222.a2.a32=36.

Từ đó cosAB,DM=36=36  .


Câu 4:

Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo của góc (MN, SC) bằng

Xem đáp án

Đáp án đúng là: D

Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a (ảnh 1)

Gọi O là tâm của hình vuông ABCD, do đó, O là tâm đường tròn ngoại tiếp của hình vuông ABCD (1)

Ta có: SA = SB = SC = SD nên S nằm trên trục của đường tròn ngoại tiếp hình vuông ABCD (2).

Từ (1) và (2) ta có: SO vuông góc với (ABCD).

Từ giả thiết ta có: MN song song với SA (do MN là đường trung bình của tam giác SAD)

(MN, SC) = (SA, SC)

Xét tam giác SAC có:

SA2 + SC2 = a2 + a2 = 2a2

AC2 = AD2 + DC2 = 2a2

Suy ra SA2 + SC2 = AC2.

Do đó, tam giác SAC vuông tại S nên SA vuông góc với SC.

Vậy (MN, SC) = (SA, SC) = 90°.


Câu 5:

Cho hình chóp S.ABCD có tất cả các cạnh đều bằng a. Gọi I và J lần lượt là trung điểm của SC và BC. Số đo của góc (IJ, CD) bằng:

Xem đáp án

Đáp án đúng là: C

Cho hình chóp S.ABCD có tất cả các cạnh đều bằng a. Gọi I và J lần lượt là trung điểm của SC và BC. Số đo của góc (IJ, CD) bằng: (ảnh 1)

 

Gọi O là tâm của hình vuông ABCD

Do đó, O là tâm của đường tròn ngoại tiếp của hình vuông ABCD (1)

Ta có: SA = SB = SC = SD nên S nằm trên trục của đường tròn ngoại tiếp hình vuông ABCD (2)

Từ (1) và (2) SO vuông góc với (ABCD)

Ta lại có: IJ // SB (do IJ là đường trung bình của tam giác SAB)

(IJ, CD) = (SB, AB)

Mặt khác, ta lại có tam giác SAB đều, do đó SBA^=60°   (IJ, CD) = (SB, AB) = 60° .


0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận