Câu hỏi:

13/02/2020 7,098

Cho hàm số f(x) = x-12ax2+4ax-a+b-2, với a,b  . Biết trên khoảng -43;0 hàm số đạt giá trị lớn nhất tại x = -1. Hỏi trên đoạn -2;-54, hàm số đạt giá trị nhỏ nhất tại giá trị nào của x?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

Tập xác định của hàm số là .

Ta có: 

Vì trên khoảng -43;0 hàm số đạt giá trị lớn nhất tại x = -1 nên hàm số đạt cực trị tại x = -1( cũng là điểm cực đại của hàm số) và a > 0.

Khi đó f'(x) = 0 ( đều là các nghiệm đơn)

Hàm số đạt cực đại tại x = -1 nên có bảng biến thiên:

=> x = -32là điểm cực tiểu duy nhất thuộc -2;-54 

Vậy hàm số đạt giá trị nhỏ nhất tại x = -32 trên đoạn -2;-54

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.

Vậy giá trị lớn nhất M = f(2)

Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .

Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.

Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).

=> f(0) > f(4)

Vậy giá trị nhỏ nhất m = f(4)

Câu 2

Lời giải

Chọn D

Ta có: 

Suy ra min y[0;2] = -1

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP