Cho hàm số y = f(x) = ||. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số đã cho trên đoạn [0;2]. Số giá trị nguyên a thuộc đoạn [-3;3] sao cho M 2m là
A. 3
B. 5
C. 6
D. 7
Quảng cáo
Trả lời:

Chọn B
Xét g(x) = với x [0;2]
Bảng biến thiên g(x)
Trường hợp 1: a 0. Khi đó M = a + 1; m = a
Ta có M 2m Với
Trường hợp 2: Khi đó M = -a; m = -(a+1)
Trường hợp 3: -1 < a < 0. Với
Vậy có 5 giá trị a cần tìm.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. m = f(4), M = f(2)
B. m = f(1), M = f(2)
C. m = f(4), M = f(1)
D. m = f(0), M = f(2)
Lời giải
Chọn A
Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.
Vậy giá trị lớn nhất M = f(2)
Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .
Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.
Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).
=> f(0) > f(4)
Vậy giá trị nhỏ nhất m = f(4)
Câu 2
A. d - 11a
B. d - 16a
C. d + 2a
D. d + 8a
Lời giải
Chọn B
Vì y = là hàm số bậc ba và có nên a < 0 và y' = 0 có hai nghiệm phân biệt.
Ta có có hai nghiệm phân biệt ac < 0
Vậy với a < 0, c > 0 thì y' = 0 có hai nghiệm đối nhau
Từ đó suy ra
c = -12a
Ta có bảng biến thiên
Ta suy ra
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. ad < 0, ab > 0
B. bd > 0, ad < 0
C. ad > 0, ab < 0
D. ab < 0, ad < 0
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. M = 18
B. M = 6
C. M = 20
D. M = 24
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.