7 câu Trắc nghiệm Tính chất ba đường trung trực của tam giác có đáp án (Thông hiểu)
20 người thi tuần này 4.6 1.5 K lượt thi 7 câu hỏi 30 phút
🔥 Đề thi HOT:
Bộ 12 Đề thi học kì 2 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Cánh diều Bài 1: Tập hợp Q các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Chân trời sáng tạo Bài 1: Tập hợp các số hữu tỉ có đáp án
Bộ 10 đề thi giữa kì 1 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
5 câu Trắc nghiệm Tập hợp các số hữu tỉ có đáp án (Nhận biết)
Bộ 12 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 04
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Do các đường trung trực của AB và AC cắt nhau tại O nên O là giao điểm của ba đường trung trực của tam giác ABC.
Do đó O nằm trên đường trung trực của BC.
Mà M là trung điểm của BC nên OM là trung trực của BC.
Suy ra OM vuông góc với BC nên \(\widehat {OMC} = 90^\circ \).
Vậy ta chọn phương án A.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Xét tam giác AMN có O là giao điểm hai đường trung trực của AM và AN nên O cách đều ba đỉnh A, M, N hay OA = OM = ON.
Gọi H là giao điểm của Ox và MA, K là giao điểm của Oy và AN.
Xét ΔAOH và ΔMOH có
\(\widehat {OHA} = \widehat {OHM} = 90^\circ \),
OA = OM (chứng minh trên),
OH là cạnh chung
Do đó ΔAOH = ΔMOH (cạnh huyền – cạnh góc vuông).
Suy ra \(\widehat {AOH} = \widehat {MOH}\)(hai góc tương ứng)
Chứng minh tương tự ta cũng có:
ΔAOK = ΔNOK (cạnh huyền – cạnh góc vuông).
Suy ra \(\widehat {AOK} = \widehat {NOK}\)(hai góc tương ứng)
Ta có \(\widehat {MON} = \widehat {MOH} + \widehat {AOH} + \widehat {AOK} + \widehat {KON}\)
Mà \(\widehat {AOH} = \widehat {MOH}\), \(\widehat {AOK} = \widehat {NOK}\) (chứng minh trên).
Suy ra \(\widehat {MON} = 2\widehat {AOH} + 2\widehat {AOK}\)
Hay \(\widehat {MON} = 2(\widehat {AOH} + \widehat {AOK}) = 2\widehat {xOy} = 2.50^\circ = 100^\circ \).
Vậy ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Vì HI là trung trực của OA nên IH ⊥ OA, OH = HA = \(\frac{1}{2}\)OA;
Vì KI là trung trực của OB nên IK ⊥ OB, OK = KB = \(\frac{1}{2}\)OB.
Mà OA = OB (giả thiết) nên OH = OK.
Xét DOIH và DOIK có
\(\widehat {OHI} = \widehat {OKI}( = 90^\circ )\),
OI là cạnh chung,
OH = OK (chứng minh trên)
Do đó DOIH = DOIK (cạnh huyển – cạnh góc vuông).
Suy ra \(\widehat {HOI} = \widehat {KOI}\) (hai góc tương ứng).
Do đó OI là tia phân giác của \(\widehat {xOy}\), nên (I) đúng.
Xét DOAB có IH là trung trực của OA, IK là trung trực của OB, IH cắt IK tại H nên I là giao điểm của ba đường trung trực trong tam giác OAB.
Do đó OI là trung trực của AB, nên (II) đúng.
Vậy ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Vì O thuộc đường trung trực của AC nên OA = OC;
Vì O thuộc đường trung trực của BD nên OB = OD.
Xét ΔAOB và ΔCOD có
OA = OC (chứng minh trên),
OB = OD (chứng minh trên),
AB = CD (giả thiết)
Do đó ΔAOB = ΔCOD (c.c.c).
Vậy ta chọn phương án B.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Vì O thuộc đường trung trực của AC nên OA = OC;
Vì O thuộc đường trung trực của BD nên OB = OD.
Xét ΔAOB và ΔCOD có
OA = OC (chứng minh trên),
OB = OD (chứng minh trên),
AB = CD (giả thiết)
Do đó ΔAOB = ΔCOD (c.c.c).
Suy ra \(\widehat {OAB} = \widehat {OCD}\) (hai góc tương ứng) (1)
Mặt khác OA = OC nên tam giác OAC cân tại O
Suy ra \(\widehat {OAC} = \widehat {OCA}\) hay \(\widehat {OAC} = \widehat {OCD}\) (2)
Từ (1) và (2) ta có \(\widehat {OAB} = \widehat {OAC}\) nên AO là tia phân giác của góc BAC.
Vậy ta chọn phương án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.