Trắc nghiệm Toán 7 Bài 8. Tính chất ba đường cao của tam giác có đáp án

  • 263 lượt thi

  • 15 câu hỏi

  • 30 phút

Câu 1:

Điền vào chỗ trống sau: “Đoạn thẳng vuông góc kẻ từ một đỉnh của một tam giác đến đường thẳng chứa cạnh đối diện gọi là … của tam giác đó”.

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Đoạn thẳng vuông góc kẻ từ một đỉnh của một tam giác đến đường thẳng chứa cạnh đối diện gọi là đường cao của tam giác đó.


Câu 2:

Điền vào chỗ trống sau: “Ba đường cao của một tam giác cùng đi qua một điểm. Điểm này được gọi là … của tam giác”.

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Ba đường cao của một tam giác cùng đi qua một điểm. Điểm này được gọi là trực tâm của tam giác.


Câu 3:

Cho ΔABC, hai đường cao AM và BN cắt nhau tại H. Em chọn phát biểu đúng.

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Cho ΔABC, hai đường cao AM và BN cắt nhau tại H. Em chọn phát biểu đúng. (ảnh 1)

Vì hai đường cao AM và BN cắt nhau tại H nên H là trực tâm của ΔABC và CH là đường cao của ΔABC.

Do đó hai câu A và B đều đúng.


Câu 4:

Cho ΔABC có đường cao AM và BN cắt nhau tại H. Chọn câu đúng.

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Cho ΔABC có đường cao AM và BN cắt nhau tại H. Chọn câu đúng. (ảnh 1)

Xét ΔABC có:

AM là đường cao (gt);

BN là đường cao (gt);

AM và BN cắt nhau tại H.

Do đó H là trực tâm của ΔABC.

Suy ra CH là đường cao của ΔABC.

Vậy CH AB.


Câu 5:

Cho tam giác ABC vuông tại A. Lấy điểm O thuộc AB. Vẽ OM vuông góc với BC tại M. Tia MO cắt AC tại N. Chọn câu đúng.

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Cho tam giác ABC vuông tại A. Lấy điểm O thuộc AB. Vẽ OM vuông góc với BC tại (ảnh 1)

Xét ∆NBC có:

NM là đường cao (OMBC, N Î OM);

BA là đường cao (BA  NC);

NM cắt BA tại O.

Do đó O là trực tâm của ∆ABC.

Suy ra CO là đường cao của ∆ABC.

Do vậy CO vuông góc với NB.

Vậy đáp án B và C đều đúng.


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận