Cho hàm số y=f(x) có đạo hàm và liên tục trên R. Biết rằng đồ thị hàm số y=f '(x) như hình dưới đây
Lập hàm số g(x)=f(x)-x^2-x. Mệnh đề nào sau đây đúng?
A.
B.
C.
D.
Quảng cáo
Trả lời:
Chọn D
Xét hàm số . Khi đó hàm số
liên tục trên các đoạn
,
và có
là một nguyên hàm của hàm số
.
Do đó diện tích hình phẳng giới hạn bởi là
.
Vì nên
.
Diện tích hình phẳng giới hạn bởi là
.
Vì nên
.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Đồ thị của hàm số liên tục trên các đoạn
và
, lại có
là một nguyên hàm của
.
Do đó diện tích của hình phẳng giới hạn bởi các đường:
là:
.
Vì
Tương tự: diện tích của hình phẳng
giới hạn bởi các đường: là:
.
.
Mặt khác, dựa vào hình vẽ ta có: .
Từ (1), (2) và (3) ta chọn đáp án A.
( có thể so sánh với
dựa vào dấu của
trên đoạn
và so sánh
với
dựa vào dấu của
trên đoạn
)
Lời giải
Chọn D
Xét hàm số .
Có
.
Ta lại có thì
. Do đó
thì
.
thì
. Do đó
thì
.
Từ đó ta có bảng biến thiên của như sau
Dựa vào bảng biến thiên, ta có
I. Hàm số có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.
II. Hàm số đạt cực tiểu tại
LÀ MỆNH ĐỀ SAI.
III. Hàm số đạt cực đại tại
LÀ MỆNH ĐỀ SAI.
IV. Hàm số đồng biến trên khoảng
LÀ MỆNH ĐỀ ĐÚNG.
V. Hàm số nghịch biến trên khoảng
LÀ MỆNH ĐỀ SAI.
Vậy có hai mệnh đề đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.