10 Bài tập Chứng minh các tính chất hình học (có lời giải)

32 người thi tuần này 4.6 187 lượt thi 10 câu hỏi 45 phút

🔥 Đề thi HOT:

1747 người thi tuần này

Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)

13.2 K lượt thi 19 câu hỏi
950 người thi tuần này

15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án

4.8 K lượt thi 15 câu hỏi
766 người thi tuần này

Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)

3.2 K lượt thi 18 câu hỏi
583 người thi tuần này

Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án

4.8 K lượt thi 13 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Nhận xét nào sau đây là đúng?

Lời giải

Hướng dẫn giải:

Đáp án đúng là: D

Vẽ tam giác ABC vuông tại A.

Nhận xét nào sau đây là đúng?  A. Trong tam giác vuông, cạnh huyền là cạnh lớn nhất; (ảnh 1)

Áp dụng định lí Pythagore vào tam giác vuông ABC ta được:

BC2 = AC2 + AB2

Þ AC < BC, AB < BC

Mà BC là cạnh huyền và AB, AC là các cạnh góc vuông.

Vậy trong giác vuông cạnh huyền là cạnh lớn nhất.

Câu 2

Cho hình vẽ:

Cho hình vẽ:    Khẳng định nào sau đây là đúng? A. HB > HC thì AB > AC; B. HB > HC thì AB = AC;  (ảnh 1)

Khẳng định nào sau đây là đúng?

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A

Áp dụng định lí Pythagore trong tam giác vuông AHB và AHC ta có:

AB2 = AH2 + BH2

AC2 = AH2 + CH2

+) Nếu BH < CH thì AB < AC.

+) Nếu BH > CH thì AB > AC.

Vậy khẳng định đúng là HB > HC thì AB > AC.

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C

Cho ba điểm A, B, C thẳng hàng và điểm B nằm giữa hai điểm A và C. Trên đường thẳng vuông góc với AC tại B ta lấy điểm H. (ảnh 1)

Áp dụng định lí Pythagore vào tam giác HBA vuông ở B ta có:

AH2 = BH2 + AB2

Þ AH > AB, AH > BH.

Câu 4

Cho hình vẽ sau

Cho hình vẽ sau  Có AB < AC, khẳng định nào sau đây là đúng? (ảnh 1)

Có AB < AC, khẳng định nào sau đây là đúng?

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B

*) Áp dụng định lí Pythagore vào tam giác vuông AHB và AHC ta có:

AB2 = AH2 + BH2

AC2 = AH2 + CH2

Vì AB < AC nên BH < CH.

*) Áp dụng định lí Pythagore vào tam giác vuông BHD và BHC ta có:

BD2 = BH2 + DH2

CD2 = CH2 + DH2

Vì BH < CH nên BD < CD.

Câu 5

Cho điểm A không nằm trên d, kẻ AHd tại H, B và C là các điểm tuỳ ý nằm trên d và khác H. Xét các khẳng định sau:

(I) AH < AB và AH < AC

(II) HB < HC

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A

Cho điểm A không nằm trên d, kẻ AH vuông góc d tại H, B và C là các điểm tuỳ ý nằm trên d và khác H. Xét các khẳng định sau: (ảnh 1)

+) Vì tam giác AHB vuông nên AH < AB.

+) Vì tam giác ACH vuông nên AH < AC.

Þ Khẳng định (I) đúng.

+) Áp dụng định lí Pythagore vào tam giác vuông AHB và AHC ta được:

AB2 = AH2 + BH2

AC2 = AH2 + CH2

Nếu AB2 < AC2 thì AB < AC. Suy ra, BH < CH.

Nếu AB2 > AC2 thì AB > AC. Suy ra, BH > CH.

Do đó, BH < CH hoặc BH > CH.

Þ Khẳng định (II) sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 9

Cho hình vẽ:

Cho hình vẽ:   Nhận xét nào sau đây là đúng? A. Vì HD < HC < HE nên AD > AC > AE; B. Vì HD > HC > HE nên AD > AC > AE;  (ảnh 1)

Nhận xét nào sau đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 10

Cho hình vẽ sau

Cho hình vẽ sau:   Khẳng định nào sau đây là sai? A. MA > MH; B. HB < HC; C. MA = MB; D. MC < MA. (ảnh 1)

Khẳng định nào sau đây là sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

37 Đánh giá

50%

40%

0%

0%

0%