Trắc nghiệm Toán 7 Bài 3. Phép cộng, phép trừ đa thức một biến có đáp án

  • 284 lượt thi

  • 15 câu hỏi

  • 60 phút

Câu 1:

Cho hai đa thức f(x) = 6x2 + 4x – 5 và g(x) = –6x2 – 4x + 2.

Tính h(x) = f(x) + g(x) và tìm bậc của h(x).

Xem đáp án

Đáp án đúng là: D

Ta có: h(x) = f(x) + g(x)

= (6x2 + 4x – 5) + (–6x2 – 4x + 2)

= 6x2 + 4x – 5 – 6x2 – 4x + 2

= (6x2 – 6x2) + (4x – 4x) + (–5 + 2)

= –3

Vậy h(x) = –3 và bậc của h(x) là 0.


Câu 2:

Cho hai đa thức f(x) = x2 + 3x – 5 và g(x) = –5x2 – x + 2.

Tính k(x) = f(x) –g(x) và tìm bậc của k(x).

Xem đáp án

Đáp án đúng là: A

Ta có: k(x) = f(x) – g(x)

= (x2 + 3x – 5) – (–5x2 – x + 2)

= x2 + 3x – 5 + 5x2 + x – 2

= (x2 + 5x2) + (3x + x) + (–5 – 2)

= 6x2 + 4x – 7

Vậy k(x) = 6x2 + 4x – 7 và bậc của k(x) là 2.


Câu 3:

Cho  f(x) = 3x5 – 3x4 + x2 – 5 và g(x) = 2x4 – x3 – x2 + 5.

Tính hiệu f(x) – g(x) rồi sắp xếp kết quả theo lũy thừa tăng dần của biến ta được:

Xem đáp án

Đáp án đúng là: B

Ta có:

f(x) – g(x)

= (3x5 – 3x4 + x2 – 5) – (2x4 – x3 –  x2 + 5)

= 3x5 – 3x4 + x2 – 5 – 2x4 + x3 + x2 – 5

= 3x5 + (–3x4 – 2x4) + x3 + (x2 + x2) – 5 – 5

= 3x5 – 5x4 + x3 + 2x2 – 10

Sắp xếp kết quả theo lũy thừa tăng dần của biến ta được:

f(x) – g(x) = –10 + 2x2 + x3 – 5x4 + 3x5.

Vậy ta chọn phương án B.


Câu 4:

Cho P(x) = 3x4 + 4x3 – 3x2 + 2x – 1 và Q(x) = –x4 + 2x3 – 3x2 + 4x – 5.

Tính P(x) + Q(x) rồi tìm bậc của đa thức thu gọn.

Xem đáp án

Đáp án đúng là: C

Ta có:

P(x) + Q(x)

= (3x4 + 4x3 – 3x2 + 2x – 1) + (–x4 + 2x3 – 3x2 + 4x – 5)

= 3x4 + 4x3 – 3x2 + 2x – 1 – x4 + 2x3 – 3x2 + 4x – 5

= (3x4 – x4) + (4x3 + 2x3) + (–3x2 – 3x2) + (2x + 4x) – 1 – 5

= 2x4 + 6x3 – 6x2 + 6x – 6.

Bậc của đa thức P(x) + Q(x) = 2x4 + 6x3 – 6x2 + 6x – 6 là 4.

Vậy ta chọn phương án C.


Câu 5:

Tìm hệ số cao nhất của đa thức k(x) biết f(x) + k(x) = g(x) và f(x) = 5x4 – 4x2 + 6x3 + x – 1; g(x) = 3 – 2x.

Xem đáp án

Đáp án đúng là: B

Ta có: f(x) + k(x) = g(x)

Suy ra k(x) = g(x) – f(x)

= 3 – 2x – (5x4 – 4x2 + 6x3 + x – 1)

= 3 – 2x – 5x4 + 4x2 – 6x3 – x + 1

= –5x4 – 6x3 + 4x2 + (–2x – x) + 3 + 1

= –5x4 – 6x3 + 4x2 – 3x + 4

Nhận thấy số hạng có lũy thừa cao nhất của biến là –5x4 nên hệ số cao nhất là –5.

Vậy ta chọn phương án B.


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận

Nguyễn Đình Lâm
20:33 - 09/03/2023

kkkkkkkkk