Thi Online Trắc nghiệm Toán 7 Bài 10. Tính chất ba đường trung tuyến của tam giác có đáp án
Trắc nghiệm Toán 7 Bài 10. Tính chất ba đường trung tuyến của tam giác có đáp án
-
246 lượt thi
-
15 câu hỏi
-
60 phút
Câu 1:
Cho hình vẽ sau:

Biết AM = 3 cm. Độ dài đoạn thẳng GM là:
Cho hình vẽ sau:
Biết AM = 3 cm. Độ dài đoạn thẳng GM là:
Đáp án đúng là: A
Trên hình vẽ, hai đường trung tuyến BN và CP cắt nhau tại G
Nên G là trọng tâm tam giác ABC
Do đó (tính chất trọng tâm)
Suy ra
Mà AM = 3 cm
Nên GM = 1 cm.
Vậy ta chọn phương án A.
Câu 2:
Cho ∆ABC cân tại A, có AM là đường trung tuyến. Khẳng định nào sau đây sai?
Cho ∆ABC cân tại A, có AM là đường trung tuyến. Khẳng định nào sau đây sai?
Đáp án đúng là: D
Vì AM là đường trung tuyến của ∆ABC nên M là trung điểm BC.
Suy ra MB = MC.
Do đó đáp án C đúng.
Xét ∆ABM và ∆ACM, có:
AB = AC (do ∆ABC cân tại A).
AM là cạnh chung.
MB = MC (chứng minh trên).
Do đó ∆ABM = ∆ACM (c.c.c).
Suy ra đáp án A đúng.
Ta có ∆ABM = ∆ACM (chứng minh trên).
Suy ra và (các cặp góc tương ứng).
Do đó đáp án D sai.
Đến đây ta có thể chọn đáp án D.
Ta có (hai góc kề bù).
Suy ra .
Do đó .
Khi đó .
Suy ra AM ⊥ BC.
Do đó đáp án B đúng.
Vậy ta chọn đáp án D.
Câu 3:
Cho ∆ABC có ba đường trung tuyến AX, BY, CZ cắt nhau tại G. Biết GA = GB = GC. Hãy so sánh GX, GY và GZ.
Cho ∆ABC có ba đường trung tuyến AX, BY, CZ cắt nhau tại G. Biết GA = GB = GC. Hãy so sánh GX, GY và GZ.
Đáp án đúng là: B
Vì G là trọng tâm của ∆ABC nên theo tính chất trọng tâm ta có:
, ,
Suy ra
Mà GA = GB = GC.
Suy ra GX = GY = GZ.
Vậy ta chọn đáp án B.
Câu 4:
Cho ∆ABC có đường trung tuyến AD. Trên đoạn thẳng AD lấy hai điểm E, G sao cho AG = GE = ED. Trọng tâm của ∆ABC là điểm:
Cho ∆ABC có đường trung tuyến AD. Trên đoạn thẳng AD lấy hai điểm E, G sao cho AG = GE = ED. Trọng tâm của ∆ABC là điểm:
Đáp án đúng là: B
Ta có AD = AG + GE + ED = AG + AG + AG = 3AG.
Suy ra AG = GE = ED = .
Ta có AE = AG + GE = .
Mà AD là đường trung tuyến của ∆ABC.
Do đó E là trọng tâm của ∆ABC.
Vậy ta chọn đáp án B.
Câu 5:
Cho ∆ABC đều có ba đường trung tuyến AD, BE, CF cắt nhau tại G. Đoạn thẳng BE bằng với đoạn thẳng nào trong các đoạn thẳng sau:
Đáp án đúng là: D
Ta có BE, CF là hai đường trung tuyến của ∆ABC.
Nên E, F lần lượt là trung điểm của AC và AB
Suy ra CE = và BF = .
Mà AB = AC (do ∆ABC đều).
Do đó .
Khi đó ta có CE = BF.
Xét ∆BCE và ∆CBF, có:
BC là cạnh chung.
CE = BF (chứng minh trên).
(do ∆ABC đều).
Do đó ∆BCE = ∆CBF (c.g.c).
Suy ra BE = CF (hai cạnh tương ứng).
Chứng minh tương tự, ta được AD = BE.
Suy ra BE = AD = CF.
Do đó đáp án A, B đều đúng.
Đáp án C sai vì:
Xét ∆ABD và ∆ACD, có:
AD là cạnh chung.
BD = CD (AD là đường trung tuyến của ∆ABC).
AB = AC (∆ABC đều).
Do đó ∆ABD = ∆ACD (c.c.c).
Suy ra (cặp góc tương ứng).
Mà (hai góc kề bù).
Do đó .
Khi đó ta có AD ⊥ BC.
Do đó đoạn thẳng AD là đường vuông góc kẻ từ điểm A đến đường thẳng BC và AB là một đường xiên kẻ từ điểm A đến đường thẳng BC.
Suy ra AD < AB.
Do đó đáp án C sai.
Vậy ta chọn đáp án D.
Có thể bạn quan tâm
Các bài thi hot trong chương
Đánh giá trung bình
0%
0%
0%
0%
0%