Đăng nhập
Đăng ký
1235 lượt thi 15 câu hỏi 30 phút
1491 lượt thi
Thi ngay
1657 lượt thi
1184 lượt thi
1234 lượt thi
1503 lượt thi
Câu 1:
Cho vectơ \(\overrightarrow a \ne \overrightarrow 0 \) với số thực k như thế nào thì vectơ \(k\overrightarrow a \) ngược hướng với vectơ \(\overrightarrow a \).
A. k = 1;
B. k = 0;
C. k < 0;
D. k > 0.
Câu 2:
Cho vectơ \(\overrightarrow a \), \(\overrightarrow b \) và hai số thực k, t. Khẳng định nào sau đây là sai?
A. k(t\(\overrightarrow a \)) = (kt)\(\overrightarrow a \);
B. (k + t)\(\overrightarrow a \) = k\(\overrightarrow a \) + t\(\overrightarrow b \);
C. k\(\left( {\overrightarrow a + \overrightarrow b } \right)\) = k\(\overrightarrow a \) + k\(\overrightarrow b \);
D. (-1)\(\overrightarrow a \) = -\(\overrightarrow a \).
Câu 3:
Cho ba điểm A, B, C phân biệt sao cho \(\overrightarrow {AB} = k\overrightarrow {AC} \).Biết rằng C là trung điểm đoạn thẳng AB. Giá trị k thỏa mãn điều kiện nào sau đây?
A. k < 0
B. k = 1
C. 0 < k < 1
D. k > 1
Câu 4:
Cho hai điểm phân biệt A và B. Xác định ví trí điểm K thỏa mãn \(\overrightarrow {KA} + 2\overrightarrow {KB} = \overrightarrow 0 \).
A. K là trung điểm của AB
B. K là điểm nằm giữa I và A thỏa mãn IK = \(\frac{1}{3}\) IB với I là trung điểm của AB.
C. K là điểm nằm giữa I và B thỏa mãn IK = \(\frac{1}{3}\) IB với I là trung điểm của AB.
D. K là điểm nằm giữa I và A thỏa mãn IK = \(\frac{1}{3}\) IA với I là trung điểm của AB.
Câu 5:
Cho tam giác ABC có đường trung tuyến AM. Khi đó \(\overrightarrow {AM} = a\overrightarrow {AB} + b\overrightarrow {AC} \). Tính S = a + 2b.
A. 1;
B. 2;
C. \(\frac{1}{2}\);
D. \(\frac{3}{2}.\)
Câu 6:
Các tam giác ABC có trọng tâm G; M, N lần lượt là trung điểm của BC và AB. Biểu thị \(\overrightarrow {MG} \) thông qua hai vec tơ \(\overrightarrow {AB} ,\overrightarrow {AC} \).
A. \(\overrightarrow {NG} = - \frac{1}{6}\overrightarrow {AC} + \frac{1}{3}\overrightarrow {AB} \);
B. \(\overrightarrow {NG} = - \frac{1}{6}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \);
C. \(\overrightarrow {NG} = - \frac{1}{6}\overrightarrow {AB} + \frac{1}{6}\overrightarrow {AC} \);
D. \(\overrightarrow {NG} = - \frac{1}{6}\overrightarrow {AC} + \frac{2}{3}\overrightarrow {AB} \).
Câu 7:
Cho tam giác ABC có G là trọng tâm tam giác. Hãy xác định điểm M để \(\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \).
A. M là trung điểm của đoạn thẳng GC;
B. M nằm giữa G và C sao cho GM = 4GC;
C. M nằm ngoài G và C sao cho GM = 4GC;
D. M nằm giữa G và C sao cho \(GM = \frac{1}{4}GC\).
Câu 8:
Trong hình vẽ, hãy biểu thị mỗi vectơ \(\overrightarrow u ,\overrightarrow v \)hai vectơ \(\overrightarrow a ,\overrightarrow b \), tức là tìm các số x, y, z, t để \(\overrightarrow u = x\overrightarrow a + y\overrightarrow b ,\overrightarrow v = t\overrightarrow a + z\overrightarrow b .\)
A. x = 1, y = 2, z = 2, t = -1;
B. x = 1, y = 2, z = -2, t = 3;
C. x = 1, y = 2, z = -2, t = -1;
D. x = 1, y = -2, z = 2, t = -3.
Câu 9:
Cho tam giác ABC . Lấy E là trung điểm của AB và F thuộc cạnh AC sao cho AF = \[\frac{1}{3}\]AC. Hãy xác định điểm M để \(\overrightarrow {MA} + 3\overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \).
A. M là trung điểm BC;
B. M là đỉnh hình chữ nhật AEFM;
C. M là đỉnh hình bình hành EAFM;
D. M là đỉnh tam giác đều BEM.
Câu 10:
Biết rằng hai vectơ \(\overrightarrow a \)và \(\overrightarrow b \) không cùng phương nhưng hai vectơ \(5x\overrightarrow a + 4\overrightarrow b \) và \(\left( {3x - 2} \right)\overrightarrow a - 2\overrightarrow b \)cùng phương. Khi đó giá trị của x bằng:
A. \(\frac{4}{{11}}\);
B. \(\frac{2}{3}\);
C. 4;
D. -4.
Câu 11:
Chất điểm A chịu tác động của ba lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \)như hình vẽ và ở trạng thái cân bằng (tức là \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow 0 \)). Tính độ lớn của các lực \(\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} ,\) biết \(\overrightarrow {{F_1}} \) có độ lớn là 20N.
A. \(\left| {\overrightarrow {{F_1}} } \right| = \frac{{20}}{{\sqrt 3 }}N,\left| {\overrightarrow {{F_2}} } \right| = \frac{{40\sqrt 3 }}{3}N;\)
B. \(\left| {\overrightarrow {{F_1}} } \right| = \frac{{40}}{{\sqrt 3 }}N,\left| {\overrightarrow {{F_2}} } \right| = \frac{{20\sqrt 3 }}{3}N;\)
C. \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \frac{{40\sqrt 3 }}{3}N;\)
D. \(\left| {\overrightarrow {{F_1}} } \right| = \frac{{60}}{{\sqrt 3 }}N,\left| {\overrightarrow {{F_2}} } \right| = \frac{{40\sqrt 3 }}{3}N.\)
Câu 12:
Cho hình vuông ABCD có cạnh AB = 2 và giao điểm các đường chéo là H. Tính độ dài của vectơ \(\overrightarrow {AB} + 2\overrightarrow {AH} \).
A. \(\frac{{\sqrt 2 }}{2}\)
B. \(\frac{{\sqrt 3 }}{2}\)
C. \(\sqrt 5 \)
D. \(\frac{1}{2}\)
Câu 13:
Cho tứ giác ABCD. Gọi M là trung điểm của cạnh AB, CD. Đẳng thức nào dưới đây là sai?
A. \(\overrightarrow {BC} + \overrightarrow {AD} = \overrightarrow {MN} \);
B. \(\overrightarrow {BC} + \overrightarrow {AD} = 2\overrightarrow {MN} \);
C. \[\overrightarrow {BC} + \overrightarrow {AD} = 3\overrightarrow {MN} \];
D. \(\overrightarrow {BC} + \overrightarrow {AD} = 4\overrightarrow {MN} \).
Câu 14:
Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) khác vec tơ – không. Hai vec tơ nào dưới đây cùng phương?
A. \(2\overrightarrow a + \overrightarrow b \) và \(\frac{1}{3}\overrightarrow a - \frac{1}{2}\overrightarrow b \);
B. \( - \overrightarrow a + \overrightarrow b \) và \( - 2\overrightarrow a + 3\overrightarrow b \);
C. \(\frac{1}{6}\overrightarrow a - \overrightarrow b \) và \( - \overrightarrow a + 6\overrightarrow b \);
D. \(\overrightarrow a + \overrightarrow b \) và \(\overrightarrow a - \overrightarrow b \).
Câu 15:
Cho hình vẽ sau:
Phát biểu nào dưới đây là đúng?
A. \(5\overrightarrow {MP} = 4\overrightarrow {MN} \);
B. \(\overrightarrow {PM} = 4\overrightarrow {PN} \);
C. \(\overrightarrow {PN} = - \frac{1}{5}\overrightarrow {MN} \);
D. Cả A, B và C đều sai
1 Đánh giá
100%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com