Danh sách câu hỏi
Có 19,663 câu hỏi trên 394 trang
Một phần sân trường được định vị bởi các điểm \[A,\,\,B,\,\,C,\,\,D\] như hình vẽ.
Bước đầu chúng được lấy "thăng bằng" đế có cùng độ cao, biết \[ABCD\] là hình thang vuông ở \(A\) và \(B\) với độ dài \(AB = 25\,\,m,\,\,AD = 15\,\,m,\,\,BC = 18\,\,{\rm{m}}.\) Do yêu cầu kĩ thuật, khi lát phẳng phần sân trường phải thoát nước về góc sân ở \(C\) nên người ta lấy độ cao ở các điểm \[B,\,\,C,\,\,D\] xuống thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng. Giá trị của \(a\) là số nào sau đây?
Cho mặt phẳng \(\left( P \right):x - y - z - 1 = 0\) và hai điểm \(A\left( { - 5\,;\,\,1\,;\,\,2} \right),\,\,B\left( {1\,;\,\, - 2\,;\,\,2} \right).\) Trong tất cả các điểm \(M\) thuộc mặt phẳng \(\left( P \right)\), để \(\left| {\overrightarrow {MA} + 2\overrightarrow {MB} } \right|\) đạt giá trị nhỏ nhất thì điểm đó có tung độ \({y_M}\) là
Cho hình chóp \[S.ABCD\] có đáy là hình bình hành có thể tích bằng 48 . Trên cạnh \[SB,\,\,SD\] lấy các điểm \[M,\,\,N\] sao cho \(SM = MB\,,\,\,SD = 3SN.\) Mặt phẳng \(\left( {AMN} \right)\) cắt \[SC\] tại \[P.\] Thể tích \(V\) của khối tứ diện \[SMNP\] bằng
Trong không gian với hệ trục tọa độ \[Oxyz,\] điểm \(M\left( {a\,;\,\,b\,;\,\,c} \right)\) thuộc mặt phẳng \((P):x + y + z - 6 = 0\) và cách đều các điểm \(A\left( {1\,;\,\,6\,;\,\,0} \right),\,\,B\left( { - 2\,;\,\,2\,;\,\, - 1} \right),\,\,C\left( {5\,;\,\, - 1\,;\,\,3} \right).\) Tích \[abc\] bằng
Trong không gian với hệ tọa độ \[Oxyz,\] cho điểm \(I\left( {2\,;\,\,3\,;\,\, - 1} \right)\) và đường thẳng \(d:\frac{{x + 7}}{2} = \frac{{y + 9}}{1} = \frac{{z + 7}}{{ - 2}}.\) Phương trình mặt cầu tâm \(I\) và cắt đường thẳng \(d\) tại hai điểm \[A,\,\,B\] thoả mãn \(AB = 40\) là
Đường thẳng \(a\) đi qua \(M\left( {4\,;\,\, - 2\,;\,\,1} \right)\), song song với mặt phẳng \((\alpha ):3x - 4y + z - 12 = 0\) và cách \(A\left( { - 2\,;\,\,5\,;\,\,0} \right)\) một khoảng lớn nhất. Khi đó, phương trình đường thẳng là
Để khuyến khích các em học sinh tích cực học tập, cô giáo quyết định thưởng cho mỗi học sinh xếp loại thi đua tốt 2 vở và 3 bút, mỗi học sinh xếp loại thi đua khá 1 vở và 1 bút. Biết tổng số tiền mua vở là \[700\,\,000\] đồng, số tiền mua bút là \[200\,\,000\] đồng. Biết giá vở là \[10\,\,000\] đồng/quyển, bút là \[2\,\,500\] đồng/chiếc. Hỏi lớp có bao nhiêu học sinh?
Trong không gian với hệ tọa độ \[Oxyz,\] cho hình hộp \(ABCD.A'B'C'D'\) với \(A\left( { - 2\,;\,\,1\,;\,\,3} \right),\,\,C\left( {2\,;\,\,3\,;\,\,5} \right),\,\,B'\left( {2\,;\,\,4\,;\,\, - 1} \right),\,\,D'\left( {0\,;\,\,2\,;\,\,1} \right).\) Tọa độ điểm \[B\] là