Bài 1: Phương pháp quy nạp toán học

  • 14362 lượt xem

  • 13 câu hỏi



Danh sách câu hỏi

Câu 1:

Xét hai mệnh đề chứa biến P(n): 3n < n + 100 và Q(n): "2n > n" với n  N*.

a) Với n = 1, 2, 3, 4, 5 thì P(n), Q(n) đúng hay sai?

b) Với mọi n ∈ N* thì P(n), Q(n) đúng hay sai?

Xem đáp án »

a) Xét P(n) : “3n < n + 100”:

+ Với n = 1, P(1) trở thành: “31 < 1 + 100”. Mệnh đề đúng vì 31 = 3 < 1 + 100 = 101.

+ Với n = 2, P(2) trở thành: “32 < 2 + 100”. Mệnh đề đúng vì 32 = 9 < 2 + 100.

+ Với n = 3, P(3) trở thành: “33 < 3 + 100”. Mệnh đề đúng vì 33 = 27 < 3 + 100.

+ Với n = 4, P(4) trở thành: “34 < 4 + 100”. Mệnh đề đúng vì 34 = 81 < 4 + 100.

+ Với n = 5, P(5) trở thành: “35 < 5 + 100”. Mệnh đề sai vì 35 = 243 > 5 + 100.

Xét Q(n): “2n > n”.

+ Với n = 1, Q(1) trở thành: “21 > 1”. Mệnh đề đúng vì 21 = 2 > 1.

+ Với n = 2, Q(2) trở thành: “22 > 2”. Mệnh đề đúng vì 22 = 4 > 2.

+ Với n = 3, Q(3) trở thành: “23 > 3”. Mệnh đề đúng vì 23 = 8 > 3.

+ Với n = 4, Q(4) trở thành: “24 > 4”. Mệnh đề đúng vì 24 = 16 > 4.

+ Với n = 5, Q(5) trở thành: “25 > 5”. Mệnh đề đúng vì 25 = 32 > 5.

b)

+ Nhận thấy P(n) không đúng với mọi n ∈ N* (sai với n = 5).

+ Với mọi n ∈ N*, Q(n) luôn đúng.


Câu 2:

Chứng minh rằng với n  N* thì 1 + 2 + 3 + ... + n = nn+12

Xem đáp án »

- Khi n = 1, VT = 1;

Giải bài tập Toán 11 | Giải Toán lớp 11

⇒ VT = VP , do đó đẳng thức đúng với n = 1.

- Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là:

Giải bài tập Toán 11 | Giải Toán lớp 11

Ta phải chứng minh rằng đẳng thức cũng đúng với n = k + 1, tức là:

Giải bài tập Toán 11 | Giải Toán lớp 11

Thật vậy, từ giả thiết quy nạp ta có:

Giải bài tập Toán 11 | Giải Toán lớp 11

Vậy đẳng thức đúng với mọi n ∈ N*


Câu 3:

Cho hai số 3n và 8n với n  N*.

a) So sánh 3n và 8n khi n = 1, 2, 3, 4, 5.

b) Dự đoán kết quả tổng quát và chứng minh bằng phương pháp quy nạp

Xem đáp án »

a)n = 1 ⇒ 31 = 3 < 8 = 8.1

n = 2 ⇒ 32 = 9 < 16 = 8.2

n = 3 ⇒ 33 = 27 > 24 = 8.3

n = 4 ⇒ 34 = 81 > 32 = 8.4

n = 5 ⇒ 35 = 243 > 40 = 8.5

b) Dự đoán kết quả tổng quát: 3n > 8n với mọi n ≥ 3

- n = 3, bất đẳng thức đúng

- Giả sử bất đẳng thức đúng với n = k ≥ 3, nghĩa là:

3k > 8k

Ta phải chứng minh rằng bất đẳng thức cũng đúng với n = k + 1, tức là:

3(k + 1) > 8(k + 1)

Thật vậy, từ giả thiết quy nạp ta có:

3(k + 1) = 3k.3 > 8k.3 = 24k = 8k + 16k

k ≥ 3 ⇒ 16k ≥ 16.3 = 48 > 8

Suy ra: 3(k + 1) > 8k + 8 = 8(k + 1)

Vậy bất đẳng thức đúng với mọi n ≥ 3


Câu 4:

Chứng minh rằng với n  N*, ta có đẳng thức: 2 + 5 + 8 + ... + 3n-1 = n3n+12

Xem đáp án »

+ Với n = 1, ta có:

VT = 3 – 1 = 2

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ VT = VP

⇒ (1) đúng với n = 1

+ Giả sử (1) đúng với n = k ≥ 1 nghĩa là:

2 + 5 + 8 + …+ (3k – 1) = k(3k + 1)/2. (*)

Ta cần chứng minh (1) đúng với n = k + 1, tức là :

Giải bài tập Đại số 11 | Để học tốt Toán 11

Thật vậy :

Ta có :

Giải bài tập Đại số 11 | Để học tốt Toán 11


Câu 5:

Chứng minh rằng với n  N*, ta có đẳng thức: 12 + 14 + 18 + ... + 12n =2n-12n

Xem đáp án »

+ Với n = 1 :

Giải bài 1 trang 82 sgk Đại số 11 | Để học tốt Toán 11

Vậy (2) đúng với n = 1

+ Giả sử đẳng thức đúng với n = k, tức là: Giải bài 1 trang 82 sgk Đại số 11 | Để học tốt Toán 11

Cần chứng minh (2) đúng với n = k + 1, tức là: Giải bài 1 trang 82 sgk Đại số 11 | Để học tốt Toán 11

Thật vậy, ta có :

Giải bài 1 trang 82 sgk Đại số 11 | Để học tốt Toán 11


Câu 6:

Chứng minh rằng với n ∈ N*, ta có đẳng thức: 12 + 22 + 32 + .... + n2 = nn+12n+16

Xem đáp án »

+ Với n = 1 :

Giải bài 1 trang 82 sgk Đại số 11 | Để học tốt Toán 11

⇒ (3) đúng với n = 1

+ Giả sử đẳng thức (3) đúng với n = k nghĩa là :

Giải bài tập Đại số 11 | Để học tốt Toán 11

Cần chứng minh (3) đúng khi n = k + 1, tức là:

Giải bài 1 trang 82 sgk Đại số 11 | Để học tốt Toán 11

Thật vậy:

Giải bài 1 trang 82 sgk Đại số 11 | Để học tốt Toán 11


Câu 7:

Chứng minh rằng với n  N*: n3 + 3n2 + 5n chia hết cho 3

Xem đáp án »

Cách 1: Quy nạp

Đặt An = n3 + 3n2 + 5n

+ Ta có: với n = 1

A1 = 1 + 3 + 5 = 9 chia hết 3

+ giả sử với n = k ≥ 1 ta có:

Ak = (k3 + 3k2 + 5k) chia hết 3 (giả thiết quy nạp)

Ta chứng minh Ak + 1 chia hết 3

Thật vậy, ta có:

Ak + 1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)

         = k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5

         = (k3 + 3k2 + 5k) + 3k2 + 9k + 9

Theo giả thiết quy nạp: k3 + 3k2 + 5k ⋮ 3

Mà 3k2 + 9k + 9 = 3.(k2 + 3k + 3) ⋮ 3

⇒ Ak + 1 ⋮ 3.

Cách 2: Chứng minh trực tiếp.

Có: n3 + 3n2 + 5n

      = n.(n2 + 3n + 5)

      = n.(n2 + 3n + 2 + 3)

      = n.(n2 + 3n + 2) + 3n

      = n.(n + 1)(n + 2) + 3n.

Mà: n(n + 1)(n + 2) ⋮ 3 (tích của ba số tự nhiên liên tiếp)

3n ⋮ 3

⇒ n3 + 3n2 + 5n = n(n + 1)(n + 2) + 3n ⋮ 3.

Vậy n3 + 3n2 + 5n chia hết cho 3 với mọi ∀n ∈ N*


Câu 8:

Chứng minh rằng với n  N*: 4n + 15n  1 chia hết cho 9

Xem đáp án »

4n + 15n – 1 chia hết cho 9

Đặt An = 4n + 15n – 1

với n = 1 ⇒ A1 = 4 + 15 – 1 = 18 chia hết 9

+ giả sử đúng với n = k ≥ 1 nghĩa là:

Ak = (4k + 15k – 1) chia hết 9 (giả thiết quy nạp)

Ta cần chứng minh: Ak + 1 chia hết 9

Thật vậy, ta có:

Ak + 1 = 4k+1 + 15(k + 1) – 1

         = 4.4k + 15k + 15 – 1

         = 4.(4k + 15k – 1) – 45k+ 4+ 15 – 1

         = 4.(4k +15k- 1) – 45k + 18

         = 4. Ak + (- 45k + 18)

Ta có: Ak⋮ 9 và ( - 45k+ 18) = 9(- 5k + 2)⋮ 9

Nên Ak + 1 ⋮ 9

Vậy 4n + 15n – 1 chia hết cho 9 ∀n ∈ N*


Câu 9:

Chứng minh rằng với n  N*: n3 + 11n chia hết cho 6.

Xem đáp án »

Cách 1: Chứng minh quy nạp.

Đặt Un = n3 + 11n

+ Với n = 1 ⇒ U1 = 12 chia hết 6

+ giả sử đúng với n = k ≥ 1 ta có:

Uk = (k3 + 11k) chia hết 6 (giả thiết quy nạp)

Ta cần chứng minh: Uk + 1 = (k + 1)3 + 11(k + 1) chia hết 6

Thật vậy ta có:

Uk+1 = (k + 1)3 + 11(k +1)

         = k3 + 3k2 + 3k + 1 + 11k + 11

         = (k3 + 11k) + 3k2 + 3k + 12

 

         = Uk + 3(k2 + k + 4)

Mà: Uk ⋮ 6 (giả thiết quy nạp)

3.(k2 + k + 4) ⋮ 6. (Vì k2 + k + 4 = k(k + 1) + 4 ⋮2)

⇒ Uk + 1 ⋮ 6.

Vậy n3 + 11n chia hết cho 6 ∀n ∈ N*.

Cách 2: Chứng minh trực tiếp.

Có: n3 + 11n

= n3 – n + 12n

= n(n2 – 1) + 12n

= n(n – 1)(n + 1) + 12n.

Vì n(n – 1)(n + 1) là tích ba số tự nhiên liên tiếp nên có ít nhất 1 thừa số chia hết cho 2 và 1 thừa số chia hết cho 3

⇒ n(n – 1)(n + 1) ⋮ 6.

Lại có: 12n ⋮ 6

⇒ n3 + 11n = n(n – 1)(n + 1) + 12n ⋮ 6.


Câu 10:

Chứng minh rằng với mọi số tự nhiên n  2, ta có bất đẳng thức: 3n > 3n + 1

Xem đáp án »

Chứng minh: 3n > 3n + 1 (1)

+ Với n = 2 thì (1) ⇔ 9 > 7 (luôn đúng).

+ Giả sử (1) đúng với n = k ≥ 2, tức là 3k > 3k + 1.

Ta chứng minh đúng với n= k+1 tức là chứng minh: 3k+ 1 > 3(k+1) + 1

Thật vậy, ta có:

3k + 1 = 3.3k > 3.(3k + 1) (Vì 3k > 3k + 1 theo giả sử)

= 9k + 3

= 3k + 3 + 6k

= 3.(k + 1) + 6k

> 3(k + 1) + 1.( vì k ≥ 2 nên 6k ≥ 12> 1)

⇒ (1) đúng với n = k + 1.

Vậy 3n > 3n + 1 đúng với mọi n ≥ 2.


Câu 11:

Chứng minh rằng với mọi số tự nhiên n  2, ta có các bất đẳng thức: 2n+1 > 2n + 3

Xem đáp án »

2n + 1 > 2n + 3 (2)

+ Với n = 2 thì (2) ⇔ 8 > 7 (luôn đúng).

+ Giả sử (2) đúng khi n = k ≥ 2, nghĩa là 2k+1 > 2k + 3.

Ta chứng minh đúng với n= k+ 1 tức là chứng minh: 2k+2 > 2(k+ 1)+ 3

Thật vậy, ta có:

2k + 2 = 2.2k + 1

> 2.(2k + 3) = 4k + 6 = 2k + 2 + 2k + 4.

> 2k + 2 + 3 = 2.(k + 1) + 3 ( Vì 2k + 4 >3 với mọi k ≥ 2)

⇒ (2) đúng với n = k + 1.

Vậy 2n + 1 > 2n + 3 với mọi n ≥ 2.


Câu 12:

cho tổng Sn = 11.2 + 12.3 + ... + 1nn+1 với nN*

a.Tính S1, S2, S3

b.Dự đoán công thức tính tổng Sn và chứng minh bằng quy nạp.

Xem đáp án »

Giải bài 4 trang 83 sgk Đại số 11 | Để học tốt Toán 11

Giải bài 4 trang 83 sgk Đại số 11 | Để học tốt Toán 11

b. Dự đoán: Giải bài 4 trang 83 sgk Đại số 11 | Để học tốt Toán 11

Ta chứng minh đẳng thức (1) bằng quy nạp

+ Với n = 1 thì (1) đúng.

+ Giả sử (1) đúng với n = k, tức là

Giải bài 4 trang 83 sgk Đại số 11 | Để học tốt Toán 11

Khi đó:

Giải bài 4 trang 83 sgk Đại số 11 | Để học tốt Toán 11

⇒ (1) đúng với n = k + 1, do đó đúng với mọi n ∈ N*


Câu 13:

Chứng minh rằng số đường chéo của một đa giác lồi n cạnh là n(n-3)/2

Xem đáp án »

Đa giác lồi n cạnh có n đỉnh.

Chọn 2 điểm bất kì trong số các đỉnh của một đa giác ta được 1 cạnh hoặc 1 đường chéo của đa giác.

⇒Tổng số cạnh và đường chéo của đa giác bằng:

Giải bài 5 trang 83 sgk Đại số 11 | Để học tốt Toán 11

⇒ số đường chéo của đa giác lồi có n cạnh là:

Giải bài 5 trang 83 sgk Đại số 11 | Để học tốt Toán 11


Đánh giá

5

Đánh giá trung bình

100%

0%

0%

0%

0%

Nhận xét

9 tháng trước

Tr Phuong Mai

Bình luận


Bình luận