Danh sách câu hỏi
Có 19,663 câu hỏi trên 394 trang
Trong không gian \[Oxyz,\] cho ba đường thẳng có phương trình lần lượt là \(d:\frac{x}{1} = \frac{y}{2} = \frac{{z + 1}}{{ - 2}},\) \({\Delta _1}:\frac{{x - 3}}{2} = \frac{y}{1} = \frac{{z - 1}}{1}\) và \({\Delta _2}:\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{z}{1}.\) Đường thẳng \(\Delta \) vuông góc với \(d\) đồng thời cắt \({\Delta _1},\,\,{\Delta _2}\) tương ứng tại \[H,\,\,K\] sao cho độ dài \[HK\] nhỏ nhất. Biết rằng \(\Delta \) có một vectơ chỉ phương \(\vec u\left( {h\,;\,\,k\,;\,\,1} \right).\) Giá trị \(h - k\) bằng
Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\left( {0\,;\,\, + \infty } \right)\) thỏa mãn \(f\left( 1 \right) = \frac{1}{3}\) và \(3x \cdot f\left( x \right) - {x^2} \cdot f'\left( x \right) = 2{f^2}\left( x \right)\), với \(f\left( x \right) \ne 0,\,\,\forall x \in \left( {0\,;\,\, + \infty } \right).\) Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên \[\left[ {1\,;\,\,2} \right].\] Tính \(M + m.\)
Trong không gian \[Oxyz,\] cho điểm \(A\left( {2\,;\,\,1\,;\,\,1} \right)\), mặt phẳng \(\left( P \right):x - z - 1 = 0\) và đường thẳng \((d):\left\{ {\begin{array}{*{20}{l}}{x = 1 - t}\\{y = 2}\\{z = - 2 + t}\end{array}} \right.\). Gọi \({d_1},\,\,{d_2}\) là các đường thẳng đi qua \(A\), năm trong \(\left( P \right)\) và đều có khoảng cách đến đường thẳng \(d\) bằng \(\sqrt 6 .\) Cosin của góc giữa \({d_1}\) và \({d_2}\) bằng
Cho khối chóp S.ABCD có đáy là hình bình hành. Gọi \[M,\,\,N\] là hai điểm nắm trên hai cạnh SC, SD sao cho \(\frac{{SM}}{{SC}} = \frac{1}{2},\,\,\frac{{SN}}{{ND}} = 2\), biết \(G\) là trọng tâm tam giác \[SAB.\] Tỉ số thể tích \(\frac{{{V_{G.MND}}}}{{{V_{S.ABCD}}}} = \frac{m}{n},\,\,m,\,\,n\) là các số nguyên dương và \(\left( {m,\,\,n} \right) = 1.\) Giá trị của \[m + n\] bằng
Trong không gian \[Oxyz,\] cho mă̆t cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 12\) và mặt phẳng \(\left( \alpha \right):x - 2y + 2z + 11 = 0.\) Lấy điểm \(M\) tùy ý trên \((\alpha ).\) Từ \(M\) kẻ các tiếp tuyến \[MA,\,\,MB,\,\,MC\] đến mặt cầu \(\left( S \right)\), với \[A,\,\,B,\,\,C\] là các tiếp điểm đôi một phân biệt. Khi \(M\) thay đổi thì mặt phẳng \(\left( {ABC} \right)\) luôn đi qua điểm cố định \(E\left( {a\,;\,\,b\,;\,\,c} \right).\) Tổng \(a + b + c\) bằng
Chọn ngẫu nhiên ba số \[a,\,\,b,\,\,c\] trong tập hợp \(S = \left\{ {1\,;\,\,2\,;\,\,3\,;\,\, \ldots ;\,\,20} \right\}.\) Biết xác suất để ba số tìm được thoả mãn \({a^2} + {b^2} + {c^2}\) chia hết cho 3 bằng \(\frac{m}{n}\), với \[m,\,\,n\] là các số nguyên dương và phân số \(\frac{m}{n}\) tối giản. Biểu thức \(S = m + n\) bằng
Trong không gian \[Oxyz,\] cho hai điểm \[A\left( {3\,;\,\,1\,;\,\,2} \right),\,\,B\left( { - 3\,;\,\, - 1\,;\,\,0} \right)\] và mặt phẳng \((P):x + y + 3z - 14 = 0.\) Điểm \(M\) thuộc mặt phẳng \((P)\) sao cho \(\Delta MAB\) vuông tại \[M.\] Tính khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {Oxy} \right).\)
Cho tứ diện \[ABCD\], trên các cạnh \(BC,\,\,BD,\,\,AC\) lần lượt lấy các điểm \(M,\,\,N,\,\,P\) sao cho \(BC = 3BM,\,\,BD = \frac{3}{2}BN,\,\,AC = 2AP.\) Mặt phẳng \(\left( {MNP} \right)\) chia khối tứ diện \[ABCD\] thành hai phần có thể tích là \({V_1},\,\,{V_2}\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\)
Trong không gian với hệ trục tọa độ \[Oxyz,\] cho ba điểm \[A\left( {a\,;\,\,0\,;\,\,0} \right),\]\[\,\,B\left( {0\,;\,\,b\,;\,\,0} \right),\,\,\] \[C\left( {0\,;\,\,0\,;\,\,c} \right)\] với \(a,\,\,b,\,\,c > 0.\) Biết rằng \(\left( {ABC} \right)\) đi qua điểm \(M\left( {\frac{1}{7}\,;\,\,\frac{2}{7}\,;\,\,\frac{3}{7}} \right)\) và tiếp xúc với mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{72}}{7}.\) Tính \(\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\).