Danh sách câu hỏi
Có 21,779 câu hỏi trên 436 trang
Cho hàm số \(y = {a^x},\,\,y = {\log _b}x\) có đồ thị là \(\left( {{C_1}} \right),\,\,\left( {{C_2}} \right)\) như hình vē bên dưới. Đường thẳng \(y = \frac{1}{2}\) cắt \(\left( {{C_1}} \right)\), trục \(Oy,\,\,\left( {{C_2}} \right)\) lần lượt tại \[M,\,\,H,\,\,N.\] Biết \(HN = 3HM\) và hình chữ nhật \[MNPQ\] có diện tích bằng 2. Tính giá trị của biểu thức \({a^2} + {b^2}.\)
Cho hình chóp \[S.ABCD.\] Gọi \[I,\,\,J,\,\,K,\,\,H\] lần lượt là trung điểm các cạnh \[SA,\,\,SB,\,\,SC,\,\]\[\,SD.\] Tính thể tích khối chóp \[S.ABCD\] biết thể tích khối chóp \[S.IJKH\] bằng 1.
Trong không gian \[Oxyz,\] cho tam giác \[ABC\] có \(A\left( {1\,;\,\,2\,;\,\, - 1} \right),\,\) \(B\left( {2\,;\,\, - 1\,;\,\,3} \right),\,\)\(C\left( { - 4\,;\,\,7\,;\,\,5} \right).\) Gọi \(D\left( {a\,;\,\,b\,;\,\,c} \right)\) là chân đường phân giác trong góc \(B\) của tam giác \[ABC\]. Giá trị của \(a + b + 2c\) bằng
Trong không gian \[Oxyz,\] cho hai điểm \(A\left( { - 2\,;\,\,4\,;\,\,1} \right),\,\,B\left( {2\,;\,\,0\,;\,\,3} \right)\) và đường thẳng \(d:\left\{ {\begin{array}{*{20}{l}}{x = 1 + t}\\{y = 1 + 2t}\\{z = - 2 + t}\end{array}} \right..\) Gọi \((S)\) là mặt cầu đi qua \[A,\,\,B\] và có tâm thuộc đường thẳng \[d.\] Bán kính mặt cầu \((S)\) bằng
Trong không gian \[Oxyz,\] vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ và trọng tâm của tam giác \[ABC\] với \[A\left( {0\,;\,\,2\,;\,\,1} \right),\,\,B\left( {4\,;\,\, - 2\,;\,\,1} \right),\,\,C\left( {2\,;\,\,3\,;\,\,4} \right)\]?
Cho hình lập phương \(ABCD \cdot A'B'C'D'\) có độ dài cạnh bằng 1. Gọi \[M,\,\,N,\,\,P,\,\,Q\] lần lượt là trung điểm của \(AB,\,\,BC,\,\,C'D',\,\,DD'.\) Gọi thể tích khối tứ diện \[MNPQ\] là phân số tối giản \(\frac{a}{b}\), với \(a,\,\,b \in {\mathbb{N}^*}.\) Tính \(a + b.\)
Bạn Hưng đang trên chiếc thuyền tại vị trí \[A\] cách bờ sông \(2\;\,{\rm{km}}\), bạn dự định chèo thuyền vào bờ và tiếp tục chạy bộ theo một đường thẳng để đến một địa điểm \({\rm{B}}\) tọa lạc ven bờ sông, \({\rm{B}}\) cách vị trí \[O\] trên bờ gần với thuyền nhất là \(4\;\,{\rm{km}}\) (hình vẽ). Biết rằng bạn Hưng chèo thuyền với vậntốc \(6\;\,{\rm{m}}/{\rm{h}}\) và chạy bộ trên bờ với vận tốc \(10\;\,{\rm{km}}/{\rm{h}}.\) Khoảng thời gian ngắn nhất để bạn Hưng từ vị trí xuất phát đến được điểm B là\[A\left( {1\,;\,\,1} \right),\,\,B\left( {4\,;\,\, - 3} \right).\]
Trong không gian với hệ tọa độ \[Oxyz,\] cho hai điểm \(A\left( {1\,;\,\,2\,;\,\, - 3} \right),B\left( { - 2\,;\,\, - 2\,;\,\,1} \right)\) và mặt phẳng \((\alpha ):2x + 2y - z + 9 = 0\). Gọi \(M\) là điểm thay đổi trên mặt phẳng \((\alpha )\) sao cho \(M\) luôn nhìn đoạn AB dưới một góc vuông. Xác định phương trình đường thẳng \[MB\] khi \[MB\] đạt giá trị lớn nhất.
Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và \(f\left( x \right) > 0,\,\,\forall x \in \mathbb{R}\), đồng thời thỏa mãn \(f\left( x \right) \cdot f'\left( x \right) - {\left[ {f\left( x \right)} \right]^2} = 2{e^{6x}},\,\,\forall x \in \mathbb{R}.\) Biết \(f(0) = 1\) và \(f\left( 1 \right) = a \cdot {e^b}\) với \(a,\,\,b \in \mathbb{Z}.\) Giá trị \(a + b\) bằng
Trong không gian với hệ tọa độ \[Oxyz,\] cho hình thang cân \[ABCD\] có các đáy lần lượt là \[AB,\,\,CD.\] Biết \(A\left( {3\,;\,\,1\,;\,\, - 2} \right),\,\,B\left( { - 1\,;\,\,3\,;\,\,2} \right),\,\,C\left( { - 6\,;\,\,3\,;\,\,6} \right)\) và \(D\left( {a\,;\,\,b\,;\,\,c} \right)\) với \(a,\,\,b,\,\,c \in \mathbb{R}.\) Tính \(T = a + b + c.\)