Danh sách câu hỏi
Có 50,580 câu hỏi trên 1,012 trang
Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions If the salinity of ocean waters is analyzed, it is found to vary only slightly from place to place. Nevertheless, some of these small changes are important. There are three basic processes that cause a change in oceanic salinity. One of these is the subtraction of water from the ocean by means of evaporation-conversion of liquid water to water vapor. In this manner, the salinity is increased, since the salt behind. If this is carried to the extreme, of course, white crystals of salt would be left behind. The opposite of evaporation is precipitation, such as rain, by which water is added to the ocean. Here the ocean is being diluted so that the salinity is decreased. This may occur in areas of high rainfall or in coastal regions where rivers flow into the ocean. Thus salinity may be increased by the subtraction of water by evaporation, or decreased by the addition of fresh water by precipitation or runoff. Normally, in tropical regions where the sun is very strong, the ocean salinity is somewhat higher than it is in other parts of the world where there is not as much evaporation. Similarly, in coastal regions where rivers dilute the sea, salinity is somewhat lower than in other oceanic areas. A third process by which salinity may be altered is associated with the formation and melting of sea ice. When seawater is frozen, the dissolved materials are left behind. In this manner, seawater directly beneath freshly formed sea ice has a higher salinity than it did before the ice appeared. Of course, when this ice melts, it will tend to decrease the salinity of the surrounding water. In the Weddell Sea, off Antarctica, the densest water in the ocean is formed as a result of this freezing process, which increases the salinity of cold water. This heavy water sinks and is found in the deeper portions of the oceans of the world. According to the passage, the ocean generally has more salt in
Read the following passage and mark the letter A, B, C, D on your answer sheet to indicate the correct answer to each of the questions According to some accounts, the first optical telescope was accidentally invented in the 1600s by children who put two glass lenses together while playing with them in a Dutch optical shop. The owner of the shop, Hans Lippershey, looked through the lenses and was amazed by the way they made the nearby church look so much larger. Soon after that, he invented a device that he called a “looker”, a long thin tube where light passed in a straight line from the front lens to the viewing lens at the other end of the tube. In 1608 he tried to sell his invention unsuccessfully. In the same year, someone described the “looker” to the Italian scientists Galileo, who made his own version of the device. In 1610 Galileo used his version to make observations of the Moon, the planet Jupiter, and the Milky Way. In April of 1611, Galileo showed his device to guests at a banquet in his honor. One of guests suggested a name for the device: telescope When Isaac Newton began using Galileo’s telescope more than a century later, he noticed a problem. The type of telescope that Galileo designed is called a refractor because the front lens bends, or refracts, the light. However, the curved front lens also caused the light to the separated into colors. This meant that when Newton looked through the refracting telescope, the images of bright objects appeared with a ring of colors around them. This sometimes interfered with viewing. He solved this problem by designing a new type of telescope that used a curved mirror. This mirror concentrated the light and reflected a beam of light to the eyepiece at the other end of the telescope. Because Newton used a mirror, his telescope was called a reflector Very much larger optical telescopes can now be found in many parts of the world, built on hills and mountains far from city lights. The world’s largest refracting telescope is located at the Yerkes Observatory in Williams Bay, Wisconsin. Another telescope stands on Mount Palomar in California. This huge reflecting telescope was for many years the largest reflecting telescope in the world until an even larger reflecting telescope was built in the Caucasus Mountains. A fourth famous reflector telescope, the Keck Telescope situated on a mountain in Hawaii, does not use a single large mirror to collect the light. Instead, the Keck uses the combined light that falls on thirty-six mirrors Radio telescopes, like optical telescopes allow astronomers to collect data from outer space, but they are different in important ways. First of all, they look very different because instead of light waves, they collect radio waves. Thus, in the place of lenses or mirror, radio telescopes employ bowl-shaped disks that resemble huge TV satellite dished. Also, apart from their distinctive appearance, radio telescope and optical telescopes use different methods to record the information they collect. Optical telescopes use cameras to take photographs of visible objects, while radio telescopes use radio receivers to record radio waves from distant object in spaceWhat can be inferred about the first optical telescope?
Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions If the salinity of ocean waters is analyzed, it is found to vary only slightly from place to place. Nevertheless, some of these small changes are important. There are three basic processes that cause a change in oceanic salinity. One of these is the subtraction of water from the ocean by means of evaporation-conversion of liquid water to water vapor. In this manner, the salinity is increased, since the salt behind. If this is carried to the extreme, of course, white crystals of salt would be left behind. The opposite of evaporation is precipitation, such as rain, by which water is added to the ocean. Here the ocean is being diluted so that the salinity is decreased. This may occur in areas of high rainfall or in coastal regions where rivers flow into the ocean. Thus salinity may be increased by the subtraction of water by evaporation, or decreased by the addition of fresh water by precipitation or runoff. Normally, in tropical regions where the sun is very strong, the ocean salinity is somewhat higher than it is in other parts of the world where there is not as much evaporation. Similarly, in coastal regions where rivers dilute the sea, salinity is somewhat lower than in other oceanic areas. A third process by which salinity may be altered is associated with the formation and melting of sea ice. When seawater is frozen, the dissolved materials are left behind. In this manner, seawater directly beneath freshly formed sea ice has a higher salinity than it did before the ice appeared. Of course, when this ice melts, it will tend to decrease the salinity of the surrounding water. In the Weddell Sea, off Antarctica, the densest water in the ocean is formed as a result of this freezing process, which increases the salinity of cold water. This heavy water sinks and is found in the deeper portions of the oceans of the world. Why does the author mention the Weddell Sea?
Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions If the salinity of ocean waters is analyzed, it is found to vary only slightly from place to place. Nevertheless, some of these small changes are important. There are three basic processes that cause a change in oceanic salinity. One of these is the subtraction of water from the ocean by means of evaporation-conversion of liquid water to water vapor. In this manner, the salinity is increased, since the salt behind. If this is carried to the extreme, of course, white crystals of salt would be left behind. The opposite of evaporation is precipitation, such as rain, by which water is added to the ocean. Here the ocean is being diluted so that the salinity is decreased. This may occur in areas of high rainfall or in coastal regions where rivers flow into the ocean. Thus salinity may be increased by the subtraction of water by evaporation, or decreased by the addition of fresh water by precipitation or runoff. Normally, in tropical regions where the sun is very strong, the ocean salinity is somewhat higher than it is in other parts of the world where there is not as much evaporation. Similarly, in coastal regions where rivers dilute the sea, salinity is somewhat lower than in other oceanic areas. A third process by which salinity may be altered is associated with the formation and melting of sea ice. When seawater is frozen, the dissolved materials are left behind. In this manner, seawater directly beneath freshly formed sea ice has a higher salinity than it did before the ice appeared. Of course, when this ice melts, it will tend to decrease the salinity of the surrounding water. In the Weddell Sea, off Antarctica, the densest water in the ocean is formed as a result of this freezing process, which increases the salinity of cold water. This heavy water sinks and is found in the deeper portions of the oceans of the world.What does the passage mainly discuss?
Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions If the salinity of ocean waters is analyzed, it is found to vary only slightly from place to place. Nevertheless, some of these small changes are important. There are three basic processes that cause a change in oceanic salinity. One of these is the subtraction of water from the ocean by means of evaporation-conversion of liquid water to water vapor. In this manner, the salinity is increased, since the salt behind. If this is carried to the extreme, of course, white crystals of salt would be left behind. The opposite of evaporation is precipitation, such as rain, by which water is added to the ocean. Here the ocean is being diluted so that the salinity is decreased. This may occur in areas of high rainfall or in coastal regions where rivers flow into the ocean. Thus salinity may be increased by the subtraction of water by evaporation, or decreased by the addition of fresh water by precipitation or runoff. Normally, in tropical regions where the sun is very strong, the ocean salinity is somewhat higher than it is in other parts of the world where there is not as much evaporation. Similarly, in coastal regions where rivers dilute the sea, salinity is somewhat lower than in other oceanic areas. A third process by which salinity may be altered is associated with the formation and melting of sea ice. When seawater is frozen, the dissolved materials are left behind. In this manner, seawater directly beneath freshly formed sea ice has a higher salinity than it did before the ice appeared. Of course, when this ice melts, it will tend to decrease the salinity of the surrounding water. In the Weddell Sea, off Antarctica, the densest water in the ocean is formed as a result of this freezing process, which increases the salinity of cold water. This heavy water sinks and is found in the deeper portions of the oceans of the world. Which of the following is NOT a result of the formation of ocean ice?
Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions If the salinity of ocean waters is analyzed, it is found to vary only slightly from place to place. Nevertheless, some of these small changes are important. There are three basic processes that cause a change in oceanic salinity. One of these is the subtraction of water from the ocean by means of evaporation-conversion of liquid water to water vapor. In this manner, the salinity is increased, since the salt behind. If this is carried to the extreme, of course, white crystals of salt would be left behind. The opposite of evaporation is precipitation, such as rain, by which water is added to the ocean. Here the ocean is being diluted so that the salinity is decreased. This may occur in areas of high rainfall or in coastal regions where rivers flow into the ocean. Thus salinity may be increased by the subtraction of water by evaporation, or decreased by the addition of fresh water by precipitation or runoff. Normally, in tropical regions where the sun is very strong, the ocean salinity is somewhat higher than it is in other parts of the world where there is not as much evaporation. Similarly, in coastal regions where rivers dilute the sea, salinity is somewhat lower than in other oceanic areas. A third process by which salinity may be altered is associated with the formation and melting of sea ice. When seawater is frozen, the dissolved materials are left behind. In this manner, seawater directly beneath freshly formed sea ice has a higher salinity than it did before the ice appeared. Of course, when this ice melts, it will tend to decrease the salinity of the surrounding water. In the Weddell Sea, off Antarctica, the densest water in the ocean is formed as a result of this freezing process, which increases the salinity of cold water. This heavy water sinks and is found in the deeper portions of the oceans of the world. The word “it” in paragraph 4 refers to .
Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions.The Development of Refrigeration Cold storage, or refrigeration, is keeping food at temperatures between 32 and 45 degrees F in order to delay the growth of microorganisms - bacteria, molds, and yeast - that cause food to spoil. Refrigeration produces few changes in food, so meats, fish, eggs, milk, fruits, and vegetables keep their original flavor, color, and nutrition. Before artificial refrigeration was invented, people stored perishable food with ice or snow to lengthen its storage time. Preserving food by keeping it in an ice-filled pit is a 4,000-year-old art. Cold storage areas were built in basements, cellars, or caves, lined with wood or straw, and packed with ice. The ice was transported from mountains, or harvested from local lakes or rivers, and delivered in large blocks to homes and businesses. Artificial refrigeration is the process of removing heat from a substance, container, or enclosed area, to lower its temperature. The heat is moved from the inside of the container to the outside. A refrigerator uses the evaporation of a volatile liquid, or refrigerant, to absorb heat. In most types of refrigerators, the refrigerant is compressed, pumped through a pipe, and allowed to vaporize. As the liquid turns to vapor, it loses heat and gets colder because the molecules of vapor use energy to leave the liquid. The molecules left behind have less energy and so the liquid becomes colder. Thus, the air inside the refrigerator is chilled. Scientists and inventors from around the world developed artificial refrigeration during the eighteenth and nineteenth centuries. William Cullen demonstrated artificial refrigeration in Scotland in 1748, when he let ethyl ether boil into a partial vacuum. In 1805, American inventor Oliver Evans designed the first refrigeration machine that used vapor instead of liquid. In 1842, physician John Gorrie used Evans's design to create an air-cooling apparatus to treat yellow-fever patients in a Florida hospital. Gorrie later left his medical practice and experimented with ice making, and in 1851 he was granted the first U.S. patent for mechanical refrigeration. In the same year, an Australian printer, James Harrison, built an ether refrigerator after noticing that when he cleaned his type with ether it became very cold as the ether evaporated. Five years later, Harrison introduced vapor-compression refrigeration to the brewing and meatpacking industries. Brewing was the first industry in the United States to use mechanical refrigeration extensively, and in the 1870s, commercial refrigeration was primarily directed at breweries. German-born Adolphus Busch was the first to use artificial refrigeration at his brewery in St. Louis. Before refrigeration, brewers stored their beer in caves, and production was constrained by the amount of available cave space. Brewing was strictly a local business since beer was highly perishable and shipping it any distance would result in spoilage. Busch solved the storage problem with the commercial vapor- compression refrigerator. He solved the shipping problem with the newly invented refrigerated railcar, which was insulated with ice bunkers in each end. Air came in on the top, passed through the bunkers, and circulated through the car by gravity. In solving Busch's spoilage and storage problems, refrigeration also revolutionized an entire industry. By 1891, nearly every brewery was equipped with mechanical refrigerating machines. The refrigerators of today rely on the same basic principle of cooling caused by the rapid evaporation and expansion of gases. Until 1929, refrigerators used toxic gases - ammonia, methyl chloride, and sulfur dioxide - as refrigerants. After those gases accidentally killed several people, chlorofluorocarbons (CFCs) became the standard refrigerant. However, they were found to be harmful to the earth's ozone layer, so refrigerators now use a refrigerant called HFC 134a, which is less harmful to the ozone.According to the passage, the first refrigerated railcar used what material as a cooling agent?
Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions.The Development of Refrigeration Cold storage, or refrigeration, is keeping food at temperatures between 32 and 45 degrees F in order to delay the growth of microorganisms - bacteria, molds, and yeast - that cause food to spoil. Refrigeration produces few changes in food, so meats, fish, eggs, milk, fruits, and vegetables keep their original flavor, color, and nutrition. Before artificial refrigeration was invented, people stored perishable food with ice or snow to lengthen its storage time. Preserving food by keeping it in an ice-filled pit is a 4,000-year-old art. Cold storage areas were built in basements, cellars, or caves, lined with wood or straw, and packed with ice. The ice was transported from mountains, or harvested from local lakes or rivers, and delivered in large blocks to homes and businesses. Artificial refrigeration is the process of removing heat from a substance, container, or enclosed area, to lower its temperature. The heat is moved from the inside of the container to the outside. A refrigerator uses the evaporation of a volatile liquid, or refrigerant, to absorb heat. In most types of refrigerators, the refrigerant is compressed, pumped through a pipe, and allowed to vaporize. As the liquid turns to vapor, it loses heat and gets colder because the molecules of vapor use energy to leave the liquid. The molecules left behind have less energy and so the liquid becomes colder. Thus, the air inside the refrigerator is chilled. Scientists and inventors from around the world developed artificial refrigeration during the eighteenth and nineteenth centuries. William Cullen demonstrated artificial refrigeration in Scotland in 1748, when he let ethyl ether boil into a partial vacuum. In 1805, American inventor Oliver Evans designed the first refrigeration machine that used vapor instead of liquid. In 1842, physician John Gorrie used Evans's design to create an air-cooling apparatus to treat yellow-fever patients in a Florida hospital. Gorrie later left his medical practice and experimented with ice making, and in 1851 he was granted the first U.S. patent for mechanical refrigeration. In the same year, an Australian printer, James Harrison, built an ether refrigerator after noticing that when he cleaned his type with ether it became very cold as the ether evaporated. Five years later, Harrison introduced vapor-compression refrigeration to the brewing and meatpacking industries. Brewing was the first industry in the United States to use mechanical refrigeration extensively, and in the 1870s, commercial refrigeration was primarily directed at breweries. German-born Adolphus Busch was the first to use artificial refrigeration at his brewery in St. Louis. Before refrigeration, brewers stored their beer in caves, and production was constrained by the amount of available cave space. Brewing was strictly a local business since beer was highly perishable and shipping it any distance would result in spoilage. Busch solved the storage problem with the commercial vapor- compression refrigerator. He solved the shipping problem with the newly invented refrigerated railcar, which was insulated with ice bunkers in each end. Air came in on the top, passed through the bunkers, and circulated through the car by gravity. In solving Busch's spoilage and storage problems, refrigeration also revolutionized an entire industry. By 1891, nearly every brewery was equipped with mechanical refrigerating machines. The refrigerators of today rely on the same basic principle of cooling caused by the rapid evaporation and expansion of gases. Until 1929, refrigerators used toxic gases - ammonia, methyl chloride, and sulfur dioxide - as refrigerants. After those gases accidentally killed several people, chlorofluorocarbons (CFCs) became the standard refrigerant. However, they were found to be harmful to the earth's ozone layer, so refrigerators now use a refrigerant called HFC 134a, which is less harmful to the ozone.The word “constrained” in paragraph 4 is closest in meaning to______.
Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions.The Development of Refrigeration Cold storage, or refrigeration, is keeping food at temperatures between 32 and 45 degrees F in order to delay the growth of microorganisms - bacteria, molds, and yeast - that cause food to spoil. Refrigeration produces few changes in food, so meats, fish, eggs, milk, fruits, and vegetables keep their original flavor, color, and nutrition. Before artificial refrigeration was invented, people stored perishable food with ice or snow to lengthen its storage time. Preserving food by keeping it in an ice-filled pit is a 4,000-year-old art. Cold storage areas were built in basements, cellars, or caves, lined with wood or straw, and packed with ice. The ice was transported from mountains, or harvested from local lakes or rivers, and delivered in large blocks to homes and businesses. Artificial refrigeration is the process of removing heat from a substance, container, or enclosed area, to lower its temperature. The heat is moved from the inside of the container to the outside. A refrigerator uses the evaporation of a volatile liquid, or refrigerant, to absorb heat. In most types of refrigerators, the refrigerant is compressed, pumped through a pipe, and allowed to vaporize. As the liquid turns to vapor, it loses heat and gets colder because the molecules of vapor use energy to leave the liquid. The molecules left behind have less energy and so the liquid becomes colder. Thus, the air inside the refrigerator is chilled. Scientists and inventors from around the world developed artificial refrigeration during the eighteenth and nineteenth centuries. William Cullen demonstrated artificial refrigeration in Scotland in 1748, when he let ethyl ether boil into a partial vacuum. In 1805, American inventor Oliver Evans designed the first refrigeration machine that used vapor instead of liquid. In 1842, physician John Gorrie used Evans's design to create an air-cooling apparatus to treat yellow-fever patients in a Florida hospital. Gorrie later left his medical practice and experimented with ice making, and in 1851 he was granted the first U.S. patent for mechanical refrigeration. In the same year, an Australian printer, James Harrison, built an ether refrigerator after noticing that when he cleaned his type with ether it became very cold as the ether evaporated. Five years later, Harrison introduced vapor-compression refrigeration to the brewing and meatpacking industries. Brewing was the first industry in the United States to use mechanical refrigeration extensively, and in the 1870s, commercial refrigeration was primarily directed at breweries. German-born Adolphus Busch was the first to use artificial refrigeration at his brewery in St. Louis. Before refrigeration, brewers stored their beer in caves, and production was constrained by the amount of available cave space. Brewing was strictly a local business since beer was highly perishable and shipping it any distance would result in spoilage. Busch solved the storage problem with the commercial vapor- compression refrigerator. He solved the shipping problem with the newly invented refrigerated railcar, which was insulated with ice bunkers in each end. Air came in on the top, passed through the bunkers, and circulated through the car by gravity. In solving Busch's spoilage and storage problems, refrigeration also revolutionized an entire industry. By 1891, nearly every brewery was equipped with mechanical refrigerating machines. The refrigerators of today rely on the same basic principle of cooling caused by the rapid evaporation and expansion of gases. Until 1929, refrigerators used toxic gases - ammonia, methyl chloride, and sulfur dioxide - as refrigerants. After those gases accidentally killed several people, chlorofluorocarbons (CFCs) became the standard refrigerant. However, they were found to be harmful to the earth's ozone layer, so refrigerators now use a refrigerant called HFC 134a, which is less harmful to the ozone.The word “it” in paragraph 3 refers to______.
Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions.The Development of Refrigeration Cold storage, or refrigeration, is keeping food at temperatures between 32 and 45 degrees F in order to delay the growth of microorganisms - bacteria, molds, and yeast - that cause food to spoil. Refrigeration produces few changes in food, so meats, fish, eggs, milk, fruits, and vegetables keep their original flavor, color, and nutrition. Before artificial refrigeration was invented, people stored perishable food with ice or snow to lengthen its storage time. Preserving food by keeping it in an ice-filled pit is a 4,000-year-old art. Cold storage areas were built in basements, cellars, or caves, lined with wood or straw, and packed with ice. The ice was transported from mountains, or harvested from local lakes or rivers, and delivered in large blocks to homes and businesses. Artificial refrigeration is the process of removing heat from a substance, container, or enclosed area, to lower its temperature. The heat is moved from the inside of the container to the outside. A refrigerator uses the evaporation of a volatile liquid, or refrigerant, to absorb heat. In most types of refrigerators, the refrigerant is compressed, pumped through a pipe, and allowed to vaporize. As the liquid turns to vapor, it loses heat and gets colder because the molecules of vapor use energy to leave the liquid. The molecules left behind have less energy and so the liquid becomes colder. Thus, the air inside the refrigerator is chilled. Scientists and inventors from around the world developed artificial refrigeration during the eighteenth and nineteenth centuries. William Cullen demonstrated artificial refrigeration in Scotland in 1748, when he let ethyl ether boil into a partial vacuum. In 1805, American inventor Oliver Evans designed the first refrigeration machine that used vapor instead of liquid. In 1842, physician John Gorrie used Evans's design to create an air-cooling apparatus to treat yellow-fever patients in a Florida hospital. Gorrie later left his medical practice and experimented with ice making, and in 1851 he was granted the first U.S. patent for mechanical refrigeration. In the same year, an Australian printer, James Harrison, built an ether refrigerator after noticing that when he cleaned his type with ether it became very cold as the ether evaporated. Five years later, Harrison introduced vapor-compression refrigeration to the brewing and meatpacking industries. Brewing was the first industry in the United States to use mechanical refrigeration extensively, and in the 1870s, commercial refrigeration was primarily directed at breweries. German-born Adolphus Busch was the first to use artificial refrigeration at his brewery in St. Louis. Before refrigeration, brewers stored their beer in caves, and production was constrained by the amount of available cave space. Brewing was strictly a local business since beer was highly perishable and shipping it any distance would result in spoilage. Busch solved the storage problem with the commercial vapor- compression refrigerator. He solved the shipping problem with the newly invented refrigerated railcar, which was insulated with ice bunkers in each end. Air came in on the top, passed through the bunkers, and circulated through the car by gravity. In solving Busch's spoilage and storage problems, refrigeration also revolutionized an entire industry. By 1891, nearly every brewery was equipped with mechanical refrigerating machines. The refrigerators of today rely on the same basic principle of cooling caused by the rapid evaporation and expansion of gases. Until 1929, refrigerators used toxic gases - ammonia, methyl chloride, and sulfur dioxide - as refrigerants. After those gases accidentally killed several people, chlorofluorocarbons (CFCs) became the standard refrigerant. However, they were found to be harmful to the earth's ozone layer, so refrigerators now use a refrigerant called HFC 134a, which is less harmful to the ozone.According to the passage, who was the first person to use artificial refrigeration for a practical purpose?