15 bài tập Một số bài toán thực tế liên quan đến Nguyên hàm của một số hàm số sơ cấp (có lời giải)
5 người thi tuần này 4.6 5 lượt thi 15 câu hỏi 45 phút
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Giả sử con lắc chuyển động theo phương trình: s = s(1). Suy ra s' (t) = v(t), do đó s(t) là một nguyên hàm của v(t). Ta có: \[\int {v\left( t \right)dt} = \int {4cost{\rm{dt}}} = 4sint + C.\]
Suy ra s(t)=4sint+C.
Tại thời điểm t = 0, ta có s(0) = 0, tức là 4sin0 + C = 0, hay C = 0. Vậy phương trình chuyển động của con lắc là: s(t) = 4sint.
Lời giải
a) Ta đã biết, công thức tính quãng đường s(t) xe ô tô đi được trong t (giây) là một nguyên hàm của hàm v(t). Do \[\int {\left( { - 10t + 30} \right)dt} {\rm{ }} = - 5{t^2} + 30t + C\]
nên ta có: \[s(t) = - 5{t^2} + 30t + C\] với C là hằng số. Do s(0) = 0 nên C = 0. Suy ra \[s(t) = - 5{t^2} + 30t\].
b) Xe ô tô dừng hẳn khi v(t) = 0, tức là – 10t + 30 = 0 hay t= 3.
Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 3 giây.
c) Ta có: tốc độ 72 km/h cũng là tốc độ 20 m/s.
Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là:
s(3) = − 5 .32 + 30 . 3 = 45 (m).
Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: 20 +45 = 65 (m).
Do 65 < 80 nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường. Vì thế, tai nạn đã không xảy ra đối với xe ô tô đó.
Lời giải
a) Hàm số \({\rm{B}}({\rm{t}})\) là một nguyên hàm của hàm số \(B(t)\).
Ta có \(\int {{B^\prime }} (t)dt = \int {\left( {20{t^3} - 300{t^2} + 1000t} \right)} dt\)\( = \int 2 0{t^3}dt - \int 3 00{t^2}dt + \int 1 000tdt.\)
Suy ra \(B(t) = 5{t^4} - 100{t^3} + 500{t^2} + C\).
Vì sau một giờ, 500 người đã có mặt tại lễ hội nên \(B(1) = 500\).
Do đó, \(5 \cdot {1^4} - 100 \cdot {1^3} + 500 \cdot {1^2} + C = 500\), suy ra \(C = 95\).
Vậy công thức của hàm số \({\rm{B}}({\rm{t}})\) biểu diễn số lượng khách tham dự lễ hội là
\(B(t) = 5{t^4} - 100{t^3} + 500{t^2} + 95(0 \le t \le 15).\)
b) Ta có \(B(3) = 5 \cdot {3^4} - 100 \cdot {3^3} + 500 \cdot {3^2} + 95 = 2300\).
Vậy sau 3 giờ có 2300 khách tham dự lễ hội.
c) Số lượng khách tham dự lễ hội lớn nhất chính là giá trị lớn nhất của hàm số \({\rm{B}}({\rm{t}})\) trên đoạn [0;15].
Ta có \({B^\prime }({\rm{t}}) = 20{{\rm{t}}^3} - 300{{\rm{t}}^2} + 1000{\rm{t}}\).
Trên khoảng \((0;15),{B^\prime }({\rm{t}}) = 0\) khi \(t = 5\) hoặc \({\rm{t}} = 10\).
\(B(0) = 95;B(5) = 3220;B(10) = 95;B(15) = 28220.{\rm{ }}\)
Do đó, \({\max _{[0;15]}}B(t) = 28220\) tại \(t = 15\).
Vậy số lượng khách tham dự lễ hội lớn nhất là 28220 khách sau 15 giờ.
d) Tốc độ thay đổi lượng khách tham dự lễ hội lớn nhất chính là giá trị lớn nhất của hàm số \({B^\prime }({\rm{t}})\) trên đoạn [0 ; 15].
Ta có \({B^{\prime \prime }}(t) = {\left( {20{t^3} - 300{t^2} + 1000t} \right)^\prime } = 60{t^2} - 600t + 1000\).
Trên khoảng \((0;15),{{\rm{B}}^{\prime \prime }}({\rm{t}}) = 0\) khi \(t = \frac{{15 - 5\sqrt 3 }}{3}\) hoặc \(t = \frac{{15 + 5\sqrt 3 }}{3}\).
\({{\rm{B}}^\prime }(0) = 0;B\left( {\frac{{15 - 5\sqrt 3 }}{3}} \right) \approx 962,25;B\left( {\frac{{15 + 5\sqrt 3 }}{3}} \right) \approx - 962,25;{\rm{B}}(15) = 15000.{\rm{ }}\)
Do đó, \({\max _{[0;15]}}{B^\prime }(t) = 15000\) tại \(t = 15\).
Lời giải
Hàm số \(M(t)\) là một nguyên hàm của hàm số \(m(t)\).
Ta có \(\int m (t)dt = \int {(800 - 2t)} dt = \int 8 00dt - \int 2 tdt = 800t - {t^2} + C\).
Suy ra \(M(t) = 800t - {t^2} + C\).
Tại \({\rm{t}} = 0\) thì \({\rm{M}}({\rm{t}}) = {\rm{M}}(0) = 0\).
Do đó \(800 \cdot 0 - {0^2} + C = 0\), suy ra \(C = 0\).
Khi đó, \(M({\rm{t}}) = 800{\rm{t}} - {{\rm{t}}^2}(0 \le {\rm{t}} \le 400)\).
Số ngày công tính đến khi hoàn thành dự án là
\(M(400) = 800 \cdot 400 - {400^2} = 160000\) (ngày công).
Chi phí nhân công lao động của công trình đó (cho đến lúc hoàn thành dự án) là
\(160000 \cdot 400000 = 6,4 \cdot {10^{10}}\) (đồng) \( = 64\) (tỷ đồng).
Lời giải
Giả sử con lắc chuyển động theo phương trình: \(s = s(t)\). Suy ra \({s^\prime }(t) = v(t)\), do đó \(s(t)\) là một nguyên hàm của \(v(t)\).
Ta có: \(\int v (t){\rm{d}}t = \int 4 \cos t\;{\rm{d}}t = 4\int {\cos } t\;{\rm{d}}t = 4\sin t + C\)
Suy ra \(s(t) = 4\sin t + C\).
Tại thời điểm \(t = 0\), ta có \(s(0) = 0\), tức là \(4\sin 0 + C = 0\), hay \(C = 0\).
Vậy phương trình chuyển động của con lắc là: \(s(t) = 4\sin t\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.