Đăng nhập
Đăng ký
1077 lượt thi 38 câu hỏi 90 phút
Câu 1:
Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 2:
Cho hàm số \[y = f\left( x \right)\] có đồ thị hàm số như hình vẽ dưới đây.
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu 3:
Cho hàm số \[y = f\left( x \right)\] liên tục trên \(\mathbb{R}\) và có bảng xét dấu \(f'\left( x \right)\) dưới đây:
Số điểm cực trị của hàm số đã cho là:
Câu 4:
A. Hàm số đạt cực đại tại \[x = 2\] và đạt cực tiểu tại \[x = 0\].
B. Hàm số đạt cực tiểu tại \[x = 2\] và đạt cực đại tại \[x = 0\].
C. Hàm số đạt cực đại tại \[x = - 2\] và cực tiểu tại \[x = 0\].
D. Hàm số đạt cực đại tại \[x = 0\] và cực tiểu tại \[x = - 2\].
Câu 5:
Câu 6:
Thể tích \(V\) (đơn vị: cm3) của 1 kg nước tại nhiệt độ \(T\left( {0^\circ C \le T \le 30^\circ C} \right)\) được tính bởi công thức sau: \(V(T) = 999,87 - 0,06426T + 0,0085043{T^2} - 0,0000679{T^3}.\) (Nguồn: J. Stewart, Calculus, Steventh Edition, Brooks/Cole, CENGAGE Learning 2012).
Hỏi thể tích \(V\left( T \right)\),\(\left( {0^\circ C \le T \le 30^\circ C} \right)\), giảm trong khoảng nhiệt độ gần với khoảng nào sau đây?
Câu 7:
Câu 8:
Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \(\left[ { - 2;3} \right]\) có đồ thị như hình vẽ dưới đây:
Gọi \(m,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 2;3} \right]\). Giá trị của \(2m - 3M\) bằng:
Câu 9:
Cho hàm số \[y = f\left( x \right)\] liên tục và có bảng biến thiên trên đoạn \(\left[ { - 1;3} \right]\) như hình vẽ dưới đây. Khẳng định nào sau đây là đúng?
Câu 10:
B. Hàm số đạt giá trị nhỏ nhất bằng \(\frac{3}{4}\) và giá trị lớn nhất bằng \(1\).
C. Hàm số không có giá trị lớn nhất và giá trị nhỏ nhất.
D. Hàm số đạt giá trị lớn nhất tại điểm có hoành độ \(x = 1\) và giá trị lớn nhất bằng \(1\).
Câu 11:
Câu 12:
Câu 13:
Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ:
Đồ thị hàm số đã cho có đường tiệm cận đứng là đường thẳng:
Câu 14:
Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ.
Phương trình đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số là:
A. Tiệm cận đứng \(x = - 2\), tiệm cận ngang \(y = 1\).
B. Tiệm cận đứng \(x = 2\), tiệm cận ngang \(y = - 1\).
C. Tiệm cận đứng \(x = 1\), tiệm cận ngang \(y = - 2\).
D. Tiệm cận đứng \(x = - 1\), tiệm cận ngang \(y = 2\).
Câu 15:
Câu 16:
Câu 17:
Câu 18:
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\).
Mệnh đề nào sau đây là sai?
Câu 19:
A. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \) với \(O\) là điểm bất kì.
B. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {DG} \).
C. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \).
D. \(\overrightarrow {GM} + \overrightarrow {GN} = \overrightarrow 0 \).
Câu 20:
Câu 21:
Câu 22:
Câu 23:
Câu 24:
Câu 25:
Câu 26:
Câu 27:
Câu 28:
Câu 29:
Câu 30:
Câu 31:
Câu 32:
Câu 33:
Câu 34:
Câu 35:
Câu 36:
Trong không gian \[Oxyz\], cho hai vectơ \(\overrightarrow a = \left( { - 2;1;2} \right)\), \(\overrightarrow b = \left( {1;1; - 1} \right)\).
a) Xác định tọa độ của \(\overrightarrow u = \overrightarrow a - 2\overrightarrow b \). (0,25 điểm)
b) Tính độ dài của \(\overrightarrow u \). (0,25 điểm)
c) Tính \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\). (0,5 điểm)
Câu 37:
Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa và các suối nước đổ về hồ. Từ lúc 8 giờ sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian \(t\) (giờ) trong ngày cho bởi công thức:
\(h(t) = - \frac{1}{3}{t^3} + 5{t^2} + 24t\), \(\left( {t > 0} \right)\).
Biết rằng phải thông báo cho các hộ dân phải di dời đi trước khi xả nước theo quy định trước 5 giờ. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước mấy giờ? Biết rằng mực nước trong hồ phải đi lên cao nhất mới xả nước. (1,0 điểm)
Câu 38:
215 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com