Bộ 5 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 3)
🔥 Đề thi HOT:
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Nhận biết hai hình đồng dạng, hai hình đồng dạng phối cảnh (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
Cách tìm mẫu thức chung cực hay, nhanh nhất
10 Bài tập Ứng dụng của xác suất thực nghiệm trong một số bài toán đơn giản (có lời giải)
Đề thi liên quan:
Danh sách câu hỏi:
Câu 4:
Nhiệt độ trung bình các tháng trong năm của một quốc gia được biểu diễn như sau:
Tháng |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
Nhiệt độ (độ C) |
2 |
3 |
5 |
15 |
20 |
30 |
29 |
27 |
20 |
15 |
12 |
7 |
Biểu đồ thích hợp để biểu diễn dữ liệu trong bảng trên là
Câu 6:
Trong trò chơi tung đồng xu, xác suất của biến cố “Mặt xuất hiện của đồng xu là mặt \(N\)” là
Câu 10:
Cho \(\Delta ABC\) có \(D,E\) lần lượt là hai điểm nằm trên \(AB\) và \(BC\) sao cho \(\frac{{AD}}{{AB}} = \frac{{CE}}{{CB}}\). Cho các khẳng định sau:
(I). \(DE\) là đường trung bình của \(\Delta ABC\).
(II). \(DE\parallel AC\).
(III). \(\frac{{DB}}{{BA}} = \frac{{DE}}{{AC}} = \frac{1}{2}\).
Khẳng định nào dưới đây là đúng?
Cho \(\Delta ABC\) có \(D,E\) lần lượt là hai điểm nằm trên \(AB\) và \(BC\) sao cho \(\frac{{AD}}{{AB}} = \frac{{CE}}{{CB}}\). Cho các khẳng định sau:
(I). \(DE\) là đường trung bình của \(\Delta ABC\).
(II). \(DE\parallel AC\).
(III). \(\frac{{DB}}{{BA}} = \frac{{DE}}{{AC}} = \frac{1}{2}\).
Khẳng định nào dưới đây là đúng?
Câu 11:
Cho \(\Delta ABC\) có \(D,E\) lần lượt là hai điểm nằm trên \(AB\) và \(BC\) sao cho \(\frac{{AD}}{{AB}} = \frac{{CE}}{{CB}}\). Cho các khẳng định sau:
(I). \(DE\) là đường trung bình của \(\Delta ABC\).
(II). \(DE\parallel AC\).
(III). \(\frac{{DB}}{{BA}} = \frac{{DE}}{{AC}} = \frac{1}{2}\).
Khẳng định nào dưới đây là đúng?
Cho \(\Delta ABC\) có \(D,E\) lần lượt là hai điểm nằm trên \(AB\) và \(BC\) sao cho \(\frac{{AD}}{{AB}} = \frac{{CE}}{{CB}}\). Cho các khẳng định sau:
(I). \(DE\) là đường trung bình của \(\Delta ABC\).
(II). \(DE\parallel AC\).
(III). \(\frac{{DB}}{{BA}} = \frac{{DE}}{{AC}} = \frac{1}{2}\).
Khẳng định nào dưới đây là đúng?
10 Đánh giá
50%
40%
0%
0%
0%