Danh sách câu hỏi
Có 21,779 câu hỏi trên 436 trang
Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {1\,;\,\,3} \right]\), thỏa mãn \(f\left( {4 - x} \right) = f\left( x \right),\,\,\forall x \in \left[ {1\,;\,\,3} \right]\) và \(\int\limits_1^3 {xf\left( x \right)dx = - 2} \). Giá trị \(2\int\limits_1^3 {f\left( x \right)dx} \) bằng
Trong không gian \(Oxyz,\) cho hai điểm \[A\left( {1\,;\,\,2\,;\,\,3} \right),{\mkern 1mu} {\mkern 1mu} \,B\left( {5\,;\,\,6\,;\,\,1} \right).\] Biết \(M\left( {a\,;\,\,b\,;\,\,0} \right)\) sao cho tổng \(MA + MB\) nhỏ nhất. Độ dài đoạn \(OM\) bằng
Trong không gian \(Oxyz\), cho hai điểm \[A\left( {1\,;\,\,2\,;\,\,3} \right),\,\,B\left( {4\,;\,\, - 7\,;\,\, - 9} \right)\], tập hợp các điểm \(M\) thỏa mãn \(2M{A^2} + M{B^2} = 165\) là mặt cầu có tâm \[I\left( {a\,;\,\,b\,;\,\,c} \right)\] và bán kính \(R.\) Giá trị biểu thức \(T = {a^2} + {b^2} + {c^2} + {R^2}\) bằng
Cho hình chóp \(S.ABCD\) đáy là hình bình hành tâm \(O\). Gọi \(M,{\mkern 1mu} {\mkern 1mu} \,N,{\mkern 1mu} {\mkern 1mu} \,P\) lần lượt là trung điểm của \(SA,\,\,SC,\,\,OB.\) Gọi \(Q\) là giao điểm của \(SD\) với \(mp\left( {MNP} \right)\). Tính \(\frac{{SQ}}{{SD}}.\)
Trong không gian với hệ tọa độ \[Oxyz\], cho hai điểm \[A\left( {1\,;\,\,0\,;\,\,1} \right)\] và \[B\left( {4\,;\,\,2\,;\,\, - 2} \right).\] Độ dài đoạn thẳng \[AB\] bằng
Trong không gian \(Oxyz,\) cho hai điểm \(A\left( {1\,;{\mkern 1mu} \,2\,;{\mkern 1mu} \,3} \right),{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} B\left( {2\,;{\mkern 1mu} \,0\,;{\mkern 1mu} \,{\mkern 1mu} 5} \right).\) Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(A\) và vuông góc với đường thẳng \(AB\) là
Trong mặt phẳng phức, cho số phức \(z\) có điểm biểu diễn là \(N.\) Biết rằng số phức \(w = \frac{1}{z}\) được biểu diễn bởi một trong bốn điểm \[M,\,\,P,\,\,Q,\,\,R\] như hình vẽ bên. Hỏi điểm biểu diễn của \(w\) là điểm nào?