Danh sách câu hỏi
Có 19,663 câu hỏi trên 394 trang
Trong không gian cho mặt cầu \((S):{x^2} + {y^2} + {z^2} = 9\) và điểm \(M\left( {{x_0};\,\,{y_0};\,\,{z_0}} \right)\) thuộc đường thẳng \(d:\left\{ {\begin{array}{*{20}{l}}{x = 1 + t}\\{y = 1 + 2t}\\{z = 2 - 3t}\end{array}} \right.\) Ba điểm \[A,\,\,B,\,\,C\] phân biệt cùng thuộc một mặt cầu sao cho \[MA,\,\,MB,\,\,MC\] là tiếp tuyến của mặt cầu. Biết rằng mặt phẳng \((ABC)\) đi qua \(D\left( {1;\,\,1;\,\,2} \right).\) Giá trị của biểu thức \(T = x_0^2 + y_0^2 + z_0^2\) bằng\[Oxyz,\]
Trong không gian \[Oxyz,\] cho hai điểm \(A\left( {2\,;\,\, - 2\,;\,\,6} \right),\,\,B\left( {3\,;\,\,3\,;\,\, - 9} \right)\) và mặt phẳng \((P):2x + 2y - z - 12 = 0\). Điểm \(M\) di động trên \(\left( P \right)\) sao cho \[MA,\,\,MB\] luôn tạo với \(\left( P \right)\) các góc bằng nhau. Biết rằng điểm \(M\) luôn thuộc một đường tròn cố định. Tung độ của tâm đường tròn đó bằng
Một giáo viên luyện thi Đại học đang đau đầu về việc thi cử thay đổi liên tục, cộng với việc lương thấp không đảm bảo cuộc sống nên đang phân vân có nên tạm thời gác lại niềm đam mê chuyển hẳn sang kinh doanh trà sữa Trân Châu hay không. Sau khi nhờ người nghiên cứu thị trường thì thi được kết quả như sau: nếu bán với giá \[40\,\,000\] đồng một cốc thì mỗi tháng trung bình bán được \[2\,\,000\] cốc, còn từ mức giá \[40\,\,000\] đồng mà cứ tăng \[1\,\,000\] đồng thì sẽ bán ít đi 100 cốc. Biết chi phí nguyên liệu để pha một cốc trà sữa không thay đổi là \[28\,\,000\] đồng. Hỏi phải bán mỗi cốc trà sữa với giá bao nhiêu nghìn đồng để thu được lợi nhuận tối đa?
Cho hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) có đạo hàm liên tục trên khoảng \(\left( {0\,;\,\, + \infty } \right)\) đồng thời thoả mãn \(f\left( 1 \right) = \frac{5}{2},\,\,g\left( 1 \right) = \frac{1}{2}\) và \(g\left( x \right) = - x \cdot f'\left( x \right),\,\,f\left( x \right) = - x \cdot g'\left( x \right)\,\,\forall x > 0.\) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),\,\,y = g\left( x \right)\) và hai đường thẳng \(x = 3,\,\,x = 5\) bằng
Trong không gian \[Oxyz,\] cho mặt phẳng \(\left( P \right):x + y + z - 1 = 0\) và hai điểm \[A\left( {1\,;\,\, - 3\,;\,\,0} \right),\] \[B\left( {5\,;\,\, - 1\,;\,\, - 2} \right).\] Điểm \(M\left( {a\,;\,\,b\,;\,\,c} \right)\) thuộc \((P)\) và \[\left| {MA - MB} \right|\] lớn nhất. Giá trị \[abc\] bằng