Danh sách câu hỏi
Có 19,663 câu hỏi trên 394 trang
Hình phẳng giới hạn bởi các đường \(y = {e^x}\,,\,\,y = 0\,,\,\,x = 0\,,\,\,x = \ln 5\) có diện tích bằng
Đáp án: ……….
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(B\) với \(AB = a,\,\,AA' = 2a,\,\,A'C = 3a.\) Gọi \(M\) là trung điểm của \(A'C'\,,\,\,I\) là giao điểm của đường thẳng \(AM\) và \(A'C.\) Thể tích khối \(IABC\) theo \(a\) là
Trong không gian với hệ tọa độ \(Oxyz,\) cho tam giác \[ABC\] với \[A\left( {1\,;\,\,0\,;\,\,0} \right),{\mkern 1mu} {\mkern 1mu} B\left( {3\,;\,\,2\,;\,\,4} \right),{\mkern 1mu} \]\[C\left( {0\,;\,\,5\,;\,\,4} \right).\] Tìm tọa độ điểm \[M\] thuộc mặt phẳng \[\left( {Oxy} \right)\] sao cho \[\left| {\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} } \right|\] nhỏ nhất.
Trong không gian \[Oxyz,\] cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} + 2x - 4y - 2z + \frac{9}{2} = 0\) và hai điểm \[A\left( {0\,;\,\,2\,;\,\,0} \right),\,\,B\left( {2\,;\,\, - 6\,;\,\, - 2} \right)\]. Điểm \(M\left( {a\,;\,\,b\,;\,\,c} \right)\) thuộc \(\left( S \right)\) thỏa mãn tích \(\overrightarrow {MA} \cdot \overrightarrow {MB} \) có giá trị nhỏ nhất. Tổng \(a + b + c\) bằng
Trong mặt phẳng tọa độ \[Oxy,\] cho tam giác \[ABC\] có đỉnh \[A\left( {2\,;\,\, - 3} \right),{\mkern 1mu} {\mkern 1mu} \,B\left( {3\,;\,\, - 2} \right)\], diện tích bằng \(\frac{3}{2}\) và trọng tâm \[G\] nằm trên đường thẳng \(3x - y - 8 = 0\). Tìm hoành độ điểm \[C,\] biết \[C\] có hoành độ dương.