Câu hỏi:

26/07/2022 772

Gọi T là phép thử "Gieo đồng thời hai con súc sắc đối xứng và đồng chất". Gọi E là biến cố "Có đúng 1 con súc sắc xuất hiện mặt 1 chấm". Tính P(E).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Gieo đồng thời hai con súc sắc đối xứng và đồng chất ta có
Ω = {(x; y)| 1 ≤ x ≤ 6; 1 ≤ y ≤ 6}. Do đó |Ω| = 6.6 = 36
E là biến cố "Có đúng 1 con súc sắc xuất hiện mặt 1 chấm". Khi đó:
E = {(1; 2), (1; 3), (1; 4), (1; 5), (1; 6), (2; 1), (3; 1), (4; 1), (5; 1), (6; 1)}
Nên |E| = 10
Vậy PE=EΩ=1036=518
Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số phần tử của không gian mẫu: n(Ω) = 6!
Bước 1: Xếp 3 học sinh đứng đầu hàng
+) Chọn 3 học sinh lớp A, B, C để đứng đầu hàng. Mỗi lớp 1 học sinh: Có C213 cách chọn.
+) Với mỗi cách chọn trên ta sắp xếp thứ tự 3 học sinh này: Có 3! cách xếp.
Theo quy tắc nhân có 48 cách xếp 3 học sinh A,B,C đứng đầu hàng.
Bước 2: Với mỗi một cách xếp 3 học sinh ở 2 bước trên (Giả sử thứ tự khi xếp 3 học sinh ở bước 2 là ABC),
+) Ta chọn 1 học sinh trong 3 học sinh còn lại xếp vị trí thứ 4
=> Chỉ có thể là học sinh lớp A: ABCA
+) Ta chọn học sinh xếp vào vị trí thứ 5: Chỉ có thể là B
+) Ta chọn học sinh xếp vào vị trí thứ 6: Chỉ có thể là C
Số phần tử của A là: nA=C213.3!=48
PA=nAnΩ=486!=115
Đáp án cần chọn là: D

Lời giải

Giả sử đề 1 đã được máy tính chọn ra. Ta xét xác suất để đề 2 giống đề 1
Ở mỗi hạng mục, xác suất để câu hỏi của 2 đề giống nhau và khác nhau lần lượt là 0,1 và 0,9.
Xác suất của biến cố đối:
Xác suất để 2 đề không trùng nhau câu hỏi nào là 0,920
Xác suất để 2 đề trùng nhau đúng 1 câu hỏi là C201.0,1.0,919
Xác suất để 2 đề trùng nhau đúng 2 câu hỏi là C202.0,12.0,918
Xác suất để 2 đề trùng nhau từ 3 câu hỏi trở lên là : 
10,920+C201.0,1.0,919+C202.0,12.0,918=0,323
Đáp án cần chọn là: D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay