Câu hỏi:

26/07/2022 474

Một hộp đựng 8 bi đỏ và 4 bi xanh. Từ hộp trên lấy lần lượt ngẫu nhiên không hoàn lại từng viên bi đến viên bi thứ ba thì dừng. Xác suất để lấy được hai bi đỏ và một bi xanh là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Số phần tử của không gian mẫu Ω là |Ω| = 12.11.10 = 1320
Gọi A là biến cố “lấy được hai bi đỏ và một bi xanh”.
TH1: Thứ tự bi lấy ra là Đ-Đ-X có 8.7.4 = 224 cách.
TH2: Thứ tự bi lấy ra là Đ-X-Đ có 8.4.7 = 224 cách.
TH3: Thứ tự bi lấy ra là X-Đ-Đ có 8.4.7 = 224 cách.
Do đó |A| = 3.8.7.4 = 672 cách.
Suy ra:
PA=AΩ=6721320=2855
Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số phần tử của không gian mẫu: n(Ω) = 6!
Bước 1: Xếp 3 học sinh đứng đầu hàng
+) Chọn 3 học sinh lớp A, B, C để đứng đầu hàng. Mỗi lớp 1 học sinh: Có C213 cách chọn.
+) Với mỗi cách chọn trên ta sắp xếp thứ tự 3 học sinh này: Có 3! cách xếp.
Theo quy tắc nhân có 48 cách xếp 3 học sinh A,B,C đứng đầu hàng.
Bước 2: Với mỗi một cách xếp 3 học sinh ở 2 bước trên (Giả sử thứ tự khi xếp 3 học sinh ở bước 2 là ABC),
+) Ta chọn 1 học sinh trong 3 học sinh còn lại xếp vị trí thứ 4
=> Chỉ có thể là học sinh lớp A: ABCA
+) Ta chọn học sinh xếp vào vị trí thứ 5: Chỉ có thể là B
+) Ta chọn học sinh xếp vào vị trí thứ 6: Chỉ có thể là C
Số phần tử của A là: nA=C213.3!=48
PA=nAnΩ=486!=115
Đáp án cần chọn là: D

Lời giải

Giả sử đề 1 đã được máy tính chọn ra. Ta xét xác suất để đề 2 giống đề 1
Ở mỗi hạng mục, xác suất để câu hỏi của 2 đề giống nhau và khác nhau lần lượt là 0,1 và 0,9.
Xác suất của biến cố đối:
Xác suất để 2 đề không trùng nhau câu hỏi nào là 0,920
Xác suất để 2 đề trùng nhau đúng 1 câu hỏi là C201.0,1.0,919
Xác suất để 2 đề trùng nhau đúng 2 câu hỏi là C202.0,12.0,918
Xác suất để 2 đề trùng nhau từ 3 câu hỏi trở lên là : 
10,920+C201.0,1.0,919+C202.0,12.0,918=0,323
Đáp án cần chọn là: D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay