Câu hỏi:

26/07/2022 510

Cho tập hợp A = {1; 2; 3; 4; 5; 6}. Gọi S là tập hợp tất cả các tam giác có độ dài ba cạnh là các phần tử của A. Chọn ngẫu nhiên một phần tử thuộc S. Xác suất để phần tử được chọn là một tam giác cân bằng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Áp dụng BĐT tam giác: |a − b| < c < a + b (với a, b, c là độ dài 3 cạnh của tam giác).
+ Tất cả các bộ ba khác nhau có giá trị bằng số đo 3 cạnh là:
(2; 3; 4), (2; 4; 5), (2; 5; 6), (3; 4; 5), (3; 4; 6), (3; 5; 6), (4; 5; 6).
⇒ Có 7 tam giác không cân.
+ Xét các tam giác cân có cạnh đáy bằng aa, cạnh bên bằng b ⇒ a < 2b.
TH1: b = 1 ⇒ a < 2 ⇒ a = 1: Có 1 tam giác cân.
TH2: b = 2 ⇒ a < 4 ⇒ a ∈ {1; 2; 3}: Có 3 tam giác cân.
TH3: b = 3 ⇒ a < 6 ⇒ a ∈ {1; 2; 3; 4; 5}: Có 5 tam giác cân.
TH4: b = 4 ⇒ a < 8 ⇒ a ∈ {1; 2; 3; 4; 5; 6}: Có 6 tam giác cân.
TH5: b = 5 ⇒ a < 10 ⇒ a ∈ {1; 2; 3; 4; 5; 6}: Có 6 tam giác cân.
TH6: b = 6 ⇒ a < 12 ⇒ a ∈ {1; 2; 3; 4; 5; 6}: Có 6 tam giác cân.
⇒⇒ Có 1+3+5+6.3=271+3+5+6.3=27 tam giác cân.
⇒ Không gian mẫu: n(Ω) = 7 + 27 = 34.
Gọi A là biến cố: “phần tử được chọn là một tam giác cân”
nA=C271=27
Vậy xác suất của biến cố A là:
PA=nAnΩ=2734
Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có 6 học sinh gồm 2 học sinh lớp A, 2 học sinh lớp B và 2 học sinh lớp C xếp ngẫu nhiên thành một hàng ngang. Tính xác suất để nhóm bất kì 3 học sinh liền kề nhau trong hàng luôn có mặt học sinh của ba lớp A, B, C

Xem đáp án » 26/07/2022 7,945

Câu 2:

Xếp ngẫu nhiên 3 nam và 5 nữ ngồi vào 8 ghế xếp thành hàng ngang. Xác suất để 3 nam ngồi cạnh nhau.

Xem đáp án » 26/07/2022 7,244

Câu 3:

Một ngân hàng đề thi có 20 hạng mục, mỗi hạng mục có 10 câu hỏi. Đề thi có 20 câu hỏi tương ứng 20 hạng mục sao cho mỗi hạng mục có đúng 1 câu hỏi. Máy tính chọn từ ngân hàng ngẫu nhiên 2 đề thi thỏa mãn tiêu chí trên. Tìm xác suất để 2 đề thi có ít nhất 3 câu hỏi trùng nhau. (Kết quả làm tròn đến hàng phần nghìn.)

Xem đáp án » 26/07/2022 6,036

Câu 4:

Một hộp đựng 8 quả cầu xanh, 12 quả cầu đỏ. Lấy ngẫu nhiên 1 quả cầu trong hộp, sau đó lấy ngẫu nhiên một quả cầu trong các quả cầu còn lại. Xác suất để lấy được 2 quả cầu cùng màu là:

Xem đáp án » 26/07/2022 4,286

Câu 5:

Xếp ngẫu nhiên 3 nam và 3 nữ ngồi vào 6 ghế xếp thành hàng ngang. Xác suất để nam nữ ngồi xen kẽ nhau là:

Xem đáp án » 26/07/2022 3,052

Câu 6:

Gieo đồng xu cân đối và đồng chất 5 lần liên tiếp. Xác suất để được ít nhất một lần xuất hiện mặt sấp là: 

Xem đáp án » 26/07/2022 3,039

Câu 7:

Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp {1, 2, 3, 4, 5, 6, 7}. Chọn ngẫu nhiên một số thuộc S, xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn bằng

Xem đáp án » 26/07/2022 1,532

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store