Danh sách câu hỏi

Có 11,844 câu hỏi trên 237 trang
Thí sinh đọc Bài đọc 3 và trả lời các câu hỏi 17 – 26 BÀI ĐỌC 3 Chạm một mẩu băng dính vào đầu bút chì. Sau khi được bóc ra, trên bề mặt băng dính sẽ còn sót lại một vài mảnh graphite (chì). Gấp đôi mẩu băng dính lại rồi tách nó ra để chia những mảnh graphite thành hai lớp. Cứ gấp đôi và mở ra như vậy 10 đến 20 lần, nếu kĩ thuật của bạn đủ tốt, thì xin chúc mừng bạn – bạn vừa tạo ra graphene – vật liệu mỏng nhất và gần như bền nhất được biết tới trên thế giới hiện nay. Kĩ thuật gấp băng dính trên chính là những gì hai nhà khoa học Andre Geim và Konstantin Novoselov đã làm để phân lập graphene – một lớp carbon có độ dày đúng bằng đường kính nguyên tử vào năm 2004. Sáu năm sau, họ đã giành được giải Nobel cho công trình này một cách hoàn toàn xứng đáng. Những đặc tính phi thường của graphene khiến nó ngày càng phổ biến: graphene giúp tai nghe tạo ra âm thanh tốt hơn, điện thoại tản nhiệt tốt hơn, mặt đường cứng và bền hơn, thậm chí cả bao bì dầu gội cũng trở nên thân thiện với môi trường hơn. Graphene không chỉ là vật liệu mỏng nhất và bền thứ hai trên thế giới – chỉ đứng sau một dạng carbon một chiều tên là carbyne – mà còn siêu nhẹ và trong suốt. Nó có thể rất dẻo hoặc rất cứng, tùy thuộc vào cách xử lý. Graphene vừa là một trong những chất dẫn nhiệt và dẫn điện tốt nhất. Nó đồng thời hút nước rất tốt nhưng lại chặn tất cả những tạp chất khác khiến nó thành một màng lọc hay tấm chắn vật chất siêu hạng. Và, như Geim và Novoselov đã chứng minh, graphene không khó chế tạo. Gustavo Dudamel, giám đốc âm nhạc của Los Angeles Philharmonic, nói một cách say mê về chiếc tai nghe GQ do một công ty khởi nghiệp của Canada có tên là Ora sản xuất: “Tôi có thể nghe rõ từng chi tiết âm nhạc – điều mà tôi chỉ từng trải qua khi đứng trên bục sân khấu trước cả một dàn nhạc giao hưởng”. Khai thác độ cứng, độ nhẹ và đặc tính giảm chấn của graphene – khả năng dừng dao động ngay lập tức khi dòng điện ngừng đi qua nó – Ora đang sử dụng graphene oxide để tạo ra màng cho tai nghe và loa. Bản thân Novoselov cũng ca ngợi công ty  hết lời vì đã giúp “graphene chính thức ra khỏi phòng thí nghiệm và bước vào thế giới âm thanh”. Ari Pinkas, người đồng sáng lập Ora giải thích rằng, từ trước đến nay, các nhà thiết kế loa luôn phải thỏa hiệp giữa độ cứng, độ nhẹ và độ giảm chấn. Nhưng giờ đây với graphene, họ không phải quan tâm đến điều đó nữa. “Trong gần hai thập kỉ, các đặc tính lý thuyết của graphene khiến người ta xem nó như một vật liệu “trời cho” đối với màng ngăn của loa” – anh nói. Sức mạnh của Graphene cũng thu hút sự quan tâm trong ngành xây dựng. Có tới 8% lượng khí thải CO2 trên thế giới đến từ sản xuất bê tông. Việc bổ sung graphene có thể cắt giảm lượng khí thải đó, vì nó sẽ giúp bê tông cứng hơn, do đó cần sử dụng ít bê tông hơn. Cây cầu thay thế cho chiếc cầu cao tốc bị sập trong vụ tai nạn kinh hoàng xảy ra vài năm trước tại Genoa, Ý được xây bằng nhựa đường có chứa bột graphene do Directa Plus, một công ty khởi nghiệp của Ý sản xuất. Graphene giúp nhiệt được phân phối đều hơn trên toàn bộ mặt đường. Do vậy, ngay cả khi bị đóng băng, những điểm lạnh nhất trên mặt được cũng ít có khả năng nứt vỡ tạo thành hàng loạt ổ gà. “Chất phụ gia này có thể giúp tăng tuổi thọ mặt đường lên gấp ba: từ sáu đến bảy năm lên 18 đến 21 năm”, Giulio Cesareo, đồng sáng lập kiêm Giám đốc điều hành Directa Plus tuyên bố. Directa Plus cũng hợp tác với Lukoil đến từ Nga và OMV đến từ Áo để làm sạch đất và nước đã bị ô nhiễm do tràn dầu ở Romania. Vì graphene có thể chặn hầu hết các chất lỏng trong khi chi cho nước đi qua, bột graphene được sử dụng trong các tấm lọc để hấp thụ dầu tràn. Khi bão hòa, người ta có thể vắt dầu từ bột này ra và sử dụng lại một cách hiệu quả. Cesareo cho biết: “Chúng tôi đã tách được 400 tấn dầu thô để gửi trở lại nhà máy lọc dầu”. Việc Graphene có thể được sử dụng như một tấm chắn vật chất linh hoạt còn tiện dụng trong thế giới bao bì. Gần đây, Toraphene – một công ty khởi nghiệp tại Anh – vừa công bố một dạng nhựa sinh học có khả năng phân hủy hoàn toàn, đồng thời hoàn toàn thích hợp để sản xuất thương mại. Loại vật liệu cùng tên là sự kết hợp của graphene với polyme tự nhiên từ thực vật, đang được bắt đầu sử dụng trong việc sản xuất các túi đi chợ. Cuối cùng chúng ta đến Skeleton Technologies – công ty của Estonia và Đức này hiện đang phối hợp với một số nhà sản xuất ô tô lớn nhất châu Âu để nghiên cứu lưu trữ năng lượng trong pin làm từ graphene. Nếu bạn xếp các lớp graphene bình thường, phẳng thì chúng sẽ nhanh chóng kết hợp với nhau thành than chì (graphite). Vì vậy, Skeleton đã phát triển một phương pháp độc quyền để chế tạo graphene cong và sử dụng chúng trong các siêu tụ điện. Lợi ích lớn nhất của graphene cong là giúp xử lý tải cao điểm khiến pin lithium-ion tiêu chuẩn quá nóng và xuống cấp theo thời gian; kết hợp cả hai loại pin này cho phép bộ pin nhỏ hơn 30% và tuổi thọ lâu gấp đôi. Theo Skeleton, các siêu tụ điện của họ có thể giúp duy trì sự ổn định của lưới điện trước tình trạng năng lượng tái tạo đang ngày càng trở nên phố biến hơn. Ý nào sau đây thể hiện rõ nhất nội dung chính của bài đọc trên?
BÀI ĐỌC 2 Thí sinh đọc Bài đọc 2 và trả lời các câu hỏi 9 – 16. Thời gian vừa qua, tình trạng ô nhiễm không khí ở Hà Nội liên tục tăng lên, ảnh hưởng trực tiếp đến sức khỏe của người dân. Một trong những nguồn phát tán gây ô nhiễm không khí đã được thành phố chỉ ra chính là khói thải từ việc sử dụng bếp than tổ ong. Theo số liệu khảo sát của Sở TN&MT Hà Nội, năm 2017, thành phố tiêu thụ trung bình khoảng 528,2 tấn than/ ngày, tương đương với việc phát thải 1.870 tấn khí CO2 vào bầu không khí. Theo nghiên cứu, đốt bếp than sẽ thải ra môi tường các chất khí độc hại như CO, SO2, NOx và bụi mịn PM2.5. Hít phải các loại khí độc này lâu dài sẽ gây ra các bệnh về hô hấp, ảnh hưởng chức năng phổ, gây tổn thương hệ thần kinh và suy giảm khả năng miễn dịch. Ngoài ra, bếp than tổ ong đặt bừa bãi trên vỉa hè, dưới lòng đường… cũng gây cản trở các hoạt động giao thông của người dân và tiềm ẩn nguy cơ mất an toàn về phòng cháy, chữa cháy. Trước thực trạng này, nhằm giảm thiểu tác động tiêu cực đến môi trường trên địa bàn, UBND TP.Hà Nội đã ban hành Chỉ thị số 15/CT-UBND ngày 30/10/2019, đặt mục tiêu hết năm 2020 phải xóa bỏ hoàn toàn việc sử dụng than tổ ong làm nhiên liệu trong sinh hoạt, kinh doanh dịch vụ… trên địa bàn thành phố. Với sự vào cuộc tích cực của các cấp chính quyền, tình trạng sử dụng bếp than tổ ong trên địa bàn Thủ đô đã giảm mạnh, nhiều nơi đã xóa bỏ được hoàn toàn loại bếp này. Theo báo cáo của Sở TN&MT Hà Nội, tính đến quý 3/2020, TP.Hà Nội còn khoảng 11.081 bếp than tổ ong, sau khi đã loại bỏ được 43.411 bếp (giảm 79,66% so với năm 2017). Theo đánh giá, việc giảm bếp than tổ ong giúp giảm tiếp xúc với các chất ô nhiễm không khí từ nấu ăn cho 160.000 gia đình ở Hà Nội. Trong đó, quận Hoàn Kiếm và huyện Thạch Thất đã xóa bỏ hoàn toàn việc sử dụng than tổ ong trong sinh hoạt và kinh doanh dịch vụ. Trong khi đó, 5 quận, huyện vẫn còn số lượng bếp than ở mức cao nhất lần lượt là Hoàng Mai, Hai Bà Trưng, Ba Đình, Đống Đa, và huyện Đan Phượng. Khảo sát nhanh của Chi cục Bảo vệ môi trường (thuộc Sở TN&MT Hà Nội) phối hợp cùng Trung tâm Sống và Học tập vì Môi trường và Cộng đồng thực hiện tại 10 điểm sản xuất than, bếp than tổ ong tại các quận Tây Hồ, Hai Bà Trưng, Thanh Xuân… cho thấy, từ tháng 9 – 11/2020, số lượng than tổ ong tiêu thụ trong một ngày từ các xưởng giảm mạnh, trung bình hiện nay dưới 1.000 viên/ngày / xưởng, có những xưởng chỉ khoảng 500 viên/ ngày. Các xưởng sản xuất than hiện đều đã cắt giảm nhân lực hoặc chuyển đổi – đa dạng hóa các hình thức kinh doanh nhỏ lẻ khác. Trên thực tế, dù đa phần người dân đều nhận thức được sự nguy hại đến sức khỏe từ bếp than tổ ong. Tuy nhiên, do lợi ích kinh tế “siêu rẻ”, một bộ phận hộ gia đình, hộ kinh doanh vẫn “ưu ái” sử dụng. Đi sâu vào các ngõ nhỏ, khu tập thể cũ, chợ dân sinh, chợ tạm… những chiếc bếp than tổ ong vẫn hiện diện. Hình ảnh người dân, các hộ kinh doanh sử dụng bếp than tổ ong làm phương tiện đun nấu vẫn xuất hiện. Theo khảo sát, những cơ sở và hộ gia đình vẫn sản xuất than tổ ong đang gặp khó khăn trong việc chuyển đổi nghề nghiệp và đảm bảo nguồn thu nhập, nên rất cần có sự hướng dẫn, hỗ trợ từ phía chính quyền địa phương. Nhằm giảm thiểu tác động tiêu cực đến môi trường trên địa bàn thành phố, mới đây, ngày 6/1/2021, UBND TP. Hà Nội đã có văn bản chỉ đạo triển khai các biện pháp cải thiện chỉ số chất lượng không khí (AQI). Theo đó, UBND TP. Hà Nội giao UBND các quận, huyện, thị xã tổ chức kiểm tra, không để tái diễn việc sử dụng bếp than tổ ong, hạn chế đốt rơm rạ, phụ phẩm cây trồng và chất thải không đúng nơi quy định; tăng cường rà soát, kiểm soát, kiểm soát các cơ sở sản xuất bếp, than tổ ong và nhiên liệu than cấp thấp, có hình thức vận động, hỗ trợ các cơ sở sản suất này chuyển đổi loại hình kinh doanh sản xuất. (Theo Lương Thụy Bình, Hà Nội quyết “xóa” than tổ ong để giảm ô nhiễm, Báo Khoa học & Đời sống, ngày 25/01/2021) Ý nào sau đây thể hiện rõ nhất nội dung chính của bài đọc trên?
Thí sinh đọc Bài đọc 1 và trả lời các câu hỏi 1 – 8.BÀI ĐỌC 1 Việt Nam đang đi đầu về chuyển đổi số, trong đó ngành giáo dục đạt được nhiều thành tựu, Trưởng đại diện UNICEF tại Việt Nam đánh giá. Ngày 15/10, bên lề hội nghị “chuyển đổi kỹ thuật số các hệ thống giáo dục trong ASEAN”, bà Rana Flowers, Trưởng đại diện UNICEF tại Việt Nam, nói thấy ấn tượng trưóc những nỗ lực và phản ứng nhanh của ngành giáo dục Việt Nam trong việc tổ chức học tập trực tuyến suốt thời gian bị ảnh hưởng bởi Covid-19.Hơn 4 tháng triển khai, gần 50% trường đại học tổ chức dạy học trực tuyến. Ở những vùng khó khăn, nhiều thầy cô tổ chức làm video bài giảng gửi lên Youtube, Zalo, Facebook và các ứng dụng khác nhằm tạo cơ hội học tập cho học sinh, thậm chí soạn bài, photo và đến từng nhà gửi bài tập cho các em.Báo cáo PISA của Tổ chức Hợp tác và phát triển kinh tế (OECD) ngày 29/9 cho thấy việc học trực tuyến trong giai đoạn Covid-19 của Việt Nam có nhiều điểm khả quan so với các quốc gia và vùng lãnh thổ. 79,7% học sinh được học trực tuyến, cao hơn mức trung bình chung của các nước OECD (67,5%).“Tôi rất tự hào về những nỗ lực của ngành giáo dục và đào tạo Việt Nam trong việc đảm bảo duy trì việc học tập của trẻ em khi trưồng học đóng cửa”, bà Rana Flowers nói, khẳng định việc nhanh chóng tổ chức dạy học trực tuyến thời gian qua là bằng chứng cho thấy khả năng chuyển đổi số trong ngành giáo dục. Bà đánh giá Việt Nam đang đi trước và đi đầu các quốc gia trong chuyển đổi số.Tuy nhiên, đại diện UNICEF cho rằng ngành giáo dục cần tiếp tục thay đổi, cải cách nhằm đảm bảo mọi trẻ em, mọi người được đi học, được xóa mù công nghệ nhằm đáp ứng những nhu cầu mới của cuộc cách mạng 4.0 cũng như đảm bảo cho các em được trang bị kỹ năng mới như giao tiếp, xác định vấn đề, giải quyết vấn đề, sự sáng tạo và kỹ năng làm việc nhóm.Bộ trưởng Bộ Giáo dục và Đào tạo Phùng Xuân Nhạ cho biết một trong những mục tiêu của hệ thống giáo dục Việt Nam là trang bị cho học sinh kỹ năng kỹ thuật số ở tất cả cắp học. Môn Tin học được đưa vào giảng dạy ngay từ bậc Tiểu học, tập trung vào 3 lĩnh vực: kỹ năng số, ứng dụng công nghệ thông tin và khoa học máy tính, bao gồm các chủ đề mới nổi của cuộc cách mạng công nghiệp 4.0 như trí tuệ nhân tạo, dữ liệu lớn và người máy.Giáo dục STEM cũng được đẩy mạnh thông qua mô hình học tập dựa trên dự án và phát triển trung tâm đổi mới trong trường học. Chương trình học không chỉ giới hạn trong việc truyền tải kiến thức mà còn chú trọng đến khả năng tiếp thu, tư duy kỹ thuật số cùng khả năng làm chủ công nghệ của người học.Ngoài ra, việc ứng dụng công nghệ thông tin trong thực hành giảng dạy và chia sẻ kiến thức đã sớm được hình thành ở Việt Nam. Ông Nhạ thông tin hiện hơn 7.000 bài học chất lượng cao được chia sẻ trên Internet. Để chuẩn bị cho chương trình giáo dục mới được triển khai từ năm học này, giáo viên cả nước đã được tập huấn trực tuyến hên tục dựa trên hệ thống LMS”, ông Nhạ nói.Cũng theo ông Nhạ, Việt Nam đang xây dựng khung năng lực số cho học sinh, từ mầm non đến THPT, trong đó không chỉ coi trọng kỹ năng sử dụng, kiến thức công nghệ mà còn hướng đến năng lực tư duy, khả năng tạo ra sản phẩm sáng tạo và thích ứng với thế giới số.Không chỉ Việt Nam, các nước ASEAN cũng đang cố gắng dạy học sinh các kỹ năng số. Bộ trưởng Giáo dục các nước ASEAN đã thông qua tuyên bố chung, khẳng định tầm quan trọng của việc xóa mù công nghệ, tăng cường thúc đẩy phát triển kỹ năng số và kỹ năng chuyển đổi số trong hệ thống giáo dục.(Theo Dương Tâm, “Việt Nam được đánh giá cao về chuyển đổi số trong giáo dục”, Báo VnExpress, ngày 15/10/2020)  Ý nào sau đây thể hiện rõ nhất nội dung chính của bài đọc trên?
Vừa qua, một sinh viên năm cuối Trường Đại học RMIT đã góp phần giải quyết một thách thức rất lớn, cản trở việc số hóa bệnh án tiếng Việt lâu nay. Phối hợp sát sao cùng với Bệnh viện Bệnh nhiệt đới và Đơn vị Ngiên cứu lâm sàng Đại học Oxford (OUCRU) tại TP.Hồ Chí Minh, Phùng Minh Tuấn đã phát triển thành công một tập hợp đầu cuối để nhận diện chữ viết trên bản quét bệnh án tiếng Việt – công nghệ giàu tiềm năng hỗ trợ chủ trương đẩy mạnh số hóa bệnh án mà Chính phủ phát động từ năm 2019. Cậu sinh viên đang học năm cuối tại Khoa học và Công nghệ ở RMIT chia sẻ rằng “công nghệ nhận diện chữ viết đã tiến bộ rất nhiều nhưng hầu hết những phương pháp hiện có được phát triển để đọc tiếng Anh và hiện nay có rất ít hay gần như không có phần mềm riêng cho tiếng Việt”. “Nhận diện chữ viết tay tiếng Việt về cơ bản thách thức hơn với tiếng Anh nhiều vì sự hiện diện của các lớp ký tự, âm điệu và dấu câu phức tạp”, Tuấn cho hay. Cậu bạn mất hơn ba tháng thử-sai-thử để tìm ra cách hiệu quả nhất có thể chuyển hình ảnh của một bệnh án giấy thành phiên bản điện tử. “Chúng tôi áp dụng quy trình giảm nhiễm, chia nhỏ chữ viết xuống cấp độ từ và áp dụng mô hình ngôn ngữ Bigram để tăng xác suất chỉnh sửa có thể cho những từ chung quanh. Quan trọng hơn là chúng tôi phối hợp và thực hiện một cấu trúc học máy bao hàm mạng lưới thần kinh nhân tạo ResNet để chiết xuất hình dạng chữ và BiLSTM để lên mẫu tần suất chữ, và CTC cho nhiệm vụ sao chép cuối cùng. Tại điểm này, tín hiệu đầu ra cuối cùng dạng chuỗi song hành cùng bộ từ vựng giúp kết quả chính xác hơn”. Giảng viên Khoa Khoa học và Công nghệ tại Đại học RMIT đồng thời là thầy trực tiếp hướng dẫn Tuấn – Tiến sĩ Đinh Ngọc Minh nhấn mạnh vào kết quả đầy hứa hẹn của công trình này. Ông cho biết tập hợp có thể đóng vai trò thiết yếu hỗ trợ công cuộc số hóa các cơ sở y tế và bệnh viện ở Việt Nam, giúp họ sẵn sàng hơn trong việc chuyển sang sử dụng hệ thống quản lý bệnh án điện tử hiện đại. “Công trình mà Tuấn đề xuất có thể đẩy mạnh quy trình số hóa hệ thống bệnh án”, Tiến sĩ Minh cho hay. “Với sự trợ giúp của máy móc trong xử lý toàn bộ bệnh án, các cơ sở y tế có thể cần chuyển sang hệ thống điện tử mà không phải thay đổi quy trình đột ngột”. “Hệ thống như vậy sẽ còn cho phép các cơ sở y tế ở vùng hẻo lánh hay cán bộ y tế không có điều kiện tiếp cận máy tính tiếp tục với hệ thống giấy tờ hiện tại và có thể số hóa dễ dàng sau đó.” Tiến sĩ Minh tin rằng việc có thể chia sẻ bệnh án của bệnh nhân dễ dàng giữa các phòng ban sẽ giúp giảm bớt những xét nghiệm không cần thiết và tối ưu hóa điều trị,và dần cải thiện chất lượng chăm sóc y tế. “Và quan trọng nhất là công trình của Tuấn có thể tạo nên bộ dữ liêu ghi chép y khoa số hóa cho các giải pháp học máy y khoa tiềm năng khác nhau”, ông nói. “Thực tế, các bên hợp tác cùng chúng tôi là Bệnh viện Bệnh nhiệt đới và OUCRU dự kiến dùng dữ liệu tạo ra được để phát triển hệ thống chuyên gia chẩn đoán, cải tiến quy trình điều trị và giảm thiểu lỗi trong thực hành y khoa”. Với công trình này, Tuấn đã có được vị trí thực tập tại OUCRU và công trình của bạn còn được thuyết trình tại Hội thảo khoa học quốc tế hạng A – the ACIS2020, Hội thảo AHT, cũng như Triển lãm trực tuyến các công trình của sinh viên RMIT. Theo Đại học RMIT Ý nào sau đây thể hiện rõ nhất nội dung chính của bài đọc trên?
Ngày 20.07.1969 Neil Armstrong đặt chân lên Mặt Trăng, đánh dấu cột mốc quan trọng của nhân loại. Nhưng đằng sau đó là một cuộc đua quyết liệt giữa Mỹ và Liên Xô. Công nghệ tên lửa vũ trụ hiện đại được khởi nguồn từ Viện nghiên cứu quân sự của Đức Quốc xã với giám đốc kỹ thuật Wernher von Braun khi đó tuổi đời còn rất trẻ. Đỉnh cao trong sự nghiệp của ông là việc phát triển thành công tên lửa cỡ lớn dài 14 mét có tên V2. Tháng 10/1942 V2 được phóng thành công lên tới độ cao 84,5 km (vượt qua ranh giới bầu khí quyển 80km – theo tiêu chuẩn của NASA hiện nay), và đạt đến độ cao 174,6 km hai năm sau đó. Từ năm 1944, tên lửa này bị coi là mối nguy tiềm tàng đối với nhiều nước. Cả người Nga và người Mỹ đều ý thức được sự vượt trội về công nghệ tên lửa của Đức. Khi chiến tranh kết thúc vào năm 1945, họ đã tìm mọi cách vơ vét tất cả những gì liên quan đến tên lửa V2. Ngay đến bảo tàng của Đức ở Peenemunde cũng chỉ có bản sao của V2 để giới thiệu với công chúng. Người ta không chỉ lấy đi các nguyên liệu, bản vẽ mà cả những tác giả của công nghệ tên lửa. Những chuyên gia tên lửa hàng đầu của Đức đã cùng với Wernher von Braun  nhanh chóng chạy về vùng Bayern để đầu hàng quân đội Mỹ. Một số người khác, tài năng không kém, thì rơi vào tay quân Nga. Nhưng bọn họ đã nhanh chóng được thả sau khi khai báo mọi thông tin cho Sergei Pavlovich Korolev (1906-1966). Sergei Pavlovich Korolev có một thời gian dài ở Đông Đức để nghiên cứu về V2, nhờ đó ông đã phát triển thành công tên lửa R1 của Liên Xô. Không lâu sau đó cuộc chạy đua phát triển tên lửa liên lục địa quân sự giữa Mỹ và Liên Xô đã nổ ra đều dựa trên nền tảng V2. Bước ngoặt xảy ra khi Liên Xô phóng “Sputnik 1” năm 1957. Nó trở thành cú sốc lớn đối với nước Mỹ. Sau đó Liên Xô tiếp tục dẫn trước: “Luna 2” thực hiện chuyến hạ cánh cứng đầu tiên lên Mặt Trăng vào năm 1959, Yuri Gagarin là người đầu tiên bay quanh Trái Đất vào năm 1961 trên tàu vũ trụ “Vostok 1”. Để đối chọi với “Sputnik”  Mỹ tung ra dự án “Vanguard”. Tuy nhiên đây là một thất bại, trong số 12 cuộc phóng thì 9 không thành công. Các chuyên gia tên lửa của Đức không tham gia dự án này, họ được giao phát triển tên lửa quân sự Redstone trên nền tảng V2. 1961 là năm bản lề đối với hành trình chinh phục Mặt Trăng của loài người. Ngày 25.05.1961, Tổng thống Kennedy tuyên bố mục tiêu ngay trong thập niên này sẽ đưa người lên Mặt Trăng và trở về an toàn. Đây là một dự án đầy tham vọng và vô cùng tốn kém nhưng được khích lệ bởi quyết tâm không để thua Liên Xô một lần nữa. Cũng trong năm đó Liên Xô đưa ra một chương trình Mặt Trăng tương tự, nhưng giữ bí mật. Chương trình chinh phục Mặt Trăng Apollo của Mỹ do Cơ quan không gian dân dụng NASA, ra đời năm 1958, chịu trách nhiệm. Wernher von Braun và đội ngũ của ông đóng một vai trò then chốt cho dù NASA thời kỳ đầu có tới 450.000 nhân sự tham gia giải quyết một khối lượng công việc khổng lồ mà thoạt đầu tưởng chừng không thể kham nổi. Von Braun có nhiệm vụ phát triển tên lửa Saturn V với chiều cao 111 mét, cho đến nay vẫn là loại tên lửa đẩy lớn nhất thế giới. Các bộ phận riêng lẻ được lắp ráp với nhau trong một nhà xưởng cao tới 160 mét ở Trung tâm Vũ trụ John F. Kennedy (KFC). Ngay trong chuyến bay thử đầu tiên vào ngày 9.11.1967 Saturn V đã thành công. Có thể nói toàn bộ chương trình tên lửa đẩy khổng lồ của Mỹ hầu như không gặp trục trặc đáng kể nào. Phải chăng von Braun và các cộng sự của ông đã gặp nhiều may mắn? Nhưng, may mắn chỉ đến với những người thực sự tài năng và có quyết tâm. Trong khi đó Liên Xô vẫn lặng lẽ bí mật xúc tiến chương trình của mình. Đối thủ của Apollo khi đó là tàu vũ trụ Sojus, vẫn còn hoạt động cho tới ngày nay. Ngay trong chuyến bay đầu tiên đã xảy ra một tai nạn chết người, khi hạ cánh dù không hoạt động. Để phục vụ cho các chuyến bay lên Mặt Trăng, Liên Xô dự định sử dụng loại tên lửa đẩy N1, cao 105 mét. Trong khi dự án đang được triển khai, ngành du hành vũ trụ Liên Xô đã bị một cú đánh trời giáng. Tổng công trình sư thiên tài Sergei Pavlovich Korolev qua đời vào năm 1966 trong một ca phẫu thuật bệnh tim. Hai kỳ phùng địch thủ Korolev và von Braun nay đã chỉ còn lại một. Nếu như Korolev không phải rời khỏi cuộc đua vì bệnh tật và cái chết, điều gì sẽ xảy ra? Sau đó thì phía Liên Xô ngày càng bế tắc. Tất cả bốn cuộc thử tên lửa từ 1969 đến 1972 đều trục trặc, không thành công, đến đây cuộc chạy đua coi như đã bị thất bại, Liên Xô ngừng chương trình Mặt Trăng. (Theo Xuân Hoài lược dịch, Lịch sử cuộc đua lên Mặt Trăng, Tạp chí Tia sáng, ngày 08/03/2021)   Ý nào sau đây thể hiện rõ nhất nội dung chính của bài đọc trên?
Mới đây nhóm nghiên cứu của PGS.TS Đỗ Văn Mạnh, Viện Công nghệ môi trường, Viện Hàn lâm Khoa học và Công nghệ Việt Nam đã triển khai thành công hệ thống xử lý bùn thải thành phân hữu cơ và khí biogas, với công suất phát điện đạt 20kW, tại thành phố Buôn Mê Thuột, Đắk Lắk. Công nghệ này được nhóm bắt đầu nghiên cứu từ năm 2016, trong Chương trình nghiên cứu khoa học công nghệ theo Nghị định thư do Bộ Khoa học và Công nghệ chủ trì, với mục tiêu xây dựng quy trình công nghệ xử lý bùn thải hiệu quả ở quy mô công nghiệp, tạo ra những sản phẩm nông nghiệp có giá trị bền vững. So với các quy trình xử lý truyền thống, công nghệ cho hiệu suất chuyển hóa bùn thải thành khí sinh học cao, giúp rút ngắn thời gian xử lý trong khoảng 15-20 ngày. Đặc biệt, hai sản phẩm thu được sau quá trình xử lý gồm khí biogas và phân bón sinh học đều đạt tiêu chuẩn sử dụng làm nguyên liệu cho sản xuất. Khí biogas sinh ra được dùng làm nguyên liệu cho máy phát điện, đáp ứng tiêu chuẩn nhiên liệu của châu Âu. TS Mạnh cho biết, bùn thải đưa vào bể tiền xử lý để điều chỉnh độ pH và các thông số khác trước khi đưa vào bể xử lý chính. Công đoạn này tạo điều kiện tốt nhất cho các nhóm vi sinh vật thực hiện quá trình phân hủy bùn thải yếm khí, có thể giảm độ pH bằng axit hoặc dùng bazo để tăng pH. Sau bước tiền xử lý, nhóm tiến hành phân hủy yếm khí bùn thải để tạo ra khí biogas. Tuy nhiên, khí biogas sau khi được rạo ra vẫn còn nhiều tạp chất (CO2, H2S, SO2), có thể gây kết tinh trong buồng đốt hoặc ăn mòn các đường dẫn,bình chứa nhiên liệu cũng như bếp đốt. Vì vậy, TS Mạnh và cộng sự đã tự chế tạo và thiết kế thành công được thiết bị lọc quay ly tâm tốc độ cao để làm sạch khí sinh học trước khi nạp vào hệ thống máy phát điện, nhờ vậy nhóm nghiên cứu đã giải mã thành công công nghệ do Đài Loan chuyển giao. Biogas được đưa vào máy ly tâm tốc độ cao HGRPB để loại bỏ tạp chất bằng dung dịch hấp thụ KOH. Dưới tác động của cơ quay trục giữa, dung dịch KOH được chuyển động ly tâm với tốc độ cao, làm tăng cường quá trình tiếp xúc giữa dung dịch hấp thụ và dòng khí đi vào. Nhờ vậy, dung dịch hấp thụ không bị kéo ra ngoài theo dòng khí, giúp biogas sau khi xử lý có độ ẩm và đạt tiêu chuẩn dành cho phát điện. “Công đoạn quan trọng nhất nằm ở kỹ thuật điều chỉnh chế độ công nghệ để gia tăng hiệu suất chuyển hóa từ bùn hữu cơ sang khí sinh học hiệu quả cao. Thiết bị do nhóm thiết kế cho ưu điểm nhỏ gọn hơn, được tạo ra từ vật liệu dễ tìm, phù hợp với điều kiện trong nước”, TS Mạnh nói và cho biết, thiết bị có khả năng phát hiện thời gian bão hòa của khí, phản ứng tiếp xúc nhanh, thu được khí biogas sạch gần như 100%, đạt tiêu chuẩn làm nhiên liệu phát điện. Nhóm đã đưa công nghệ ứng dụng xử lý bùn thải tại một doanh nghiệp sản xuất bia tại Đắk Lắk, toàn bộ 15m3 bùn mỗi ngày được xử lý để phát điện với công suất 20kW. Lượng điện này phục vụ lại vận hành máy bơm, các thiết bị xử lý của hệ thống hoặc đèn chiếu sáng trong các trang trại rau. Lượng bùn thải sau quá trình phân hủy còn lại được phối trộn với các thành phần vi lượng và vi sinh vật để tạo phân bón hữu cơ sinh học giúp đất tăng độ ẩm và độ tơi xốp, nâng cao hiệu quả sử dụng phân. Loại phân hữu cơ được bón cho cây rau ngắn ngày cho chất lượng tốt, hạn chế sâu bệnh và tăng năng suất. Bùn thải từ các hoạt động sản xuất, chứa rất nhiều các tế bào vi sinh vật và hỗn hợp các protein, polisaccarit, lipit. Hiện nay, việc xử lý bùn thải tại Việt Nam mới chỉ áp dụng phương pháp ủ hoặc chôn lấp, chưa có hệ thống công nghệ xử lý hoàn thiện ở quy mô lớn, kết hợp với xử lý chất thải rắn. Nếu không được xử lý kịp thời, khối lượng lớn bùn thải sẽ gây ảnh hưởng nghiêm trọng môi trường. “Công nghệ xử lý bùn thải được nhóm hoàn thiện với mục tiêu vừa có thể hạn chế thải các chất ô nhiễm ra ngoài môi trường, vừa tạo ra những sản phẩm giá trị như khí biogas, phân bón hữu cơ. Từ đó góp phần tạo nên một nền nông nghiệp tuần hoàn, bền vững”, TS Mạnh nói. Tuy nhiên đây mới là thành công ở quy mô xử lý nhỏ. Để có thể phát triển hệ thống ở quy mô bán công nghiệp với khối lượng 80 tấn, đem lại hiệu quả cao, nhóm nghiên cứu cho rằng cần phải làm chủ công nghệ và có sự phối hợp giữa các bên liên quan trong việc xây dựng những nhà máy xử lý bùn thải tại các thành phố, khu công nghiệp lớn. (Theo Nguyễn Xuân, Công nghệ xử lý bùn thải tạo khí sinh học phát điện, Báo VN Express, ngày 21/11/2020)   Ý nghĩa nào sau đây thể hiện rõ nhất nội dung chính của bài đọc trên?
Nước thải chăn nuôi nói riêng và những loại nước thải giàu chất hữu cơ trong quá trình sản xuất, chế biến hoặc sinh hoạt thường ngày của con người nói chung đều tiềm ẩn nguy cơ gây ô nhiễm môi trường, ảnh hưởng đến sức khỏe cộng đồng nếu không được xử lý đúng cách. Hiện nay, việc xử lý nước thải giàu hữu cơ chủ yếu thông qua các biện pháp sinh học, sử dụng vi sinh vật yếm khí (Anaerobic), thiếu khí (Anoxic) và hiếu khí (Oxic) để phân hủy các thành phần hữu cơ, kết hợp với một số phương pháp khác để xử lý, đảm bảo các yêu cầu về môi trường trước khi xả ra nguồn tiếp nhận. Tuy nhiên, không phải lúc nào việc xử lý cũng đạt được hiệu quả như mong muốn do phải kiểm soát chặt chẽ quá trình vận hành, thời gian, nhiệt độ và mức oxy thích hợp, đồng thời phải bổ sung những chất dinh dưỡng cần thiết như nitơ, phốtpho hoặc các thành phần vi lượng đảm bảo cho vi sinh vật phát triển. Thêm vào đó, quá trình phân hủy nhiệt động học các thành phần hữu cơ nhờ vi sinh vật cũng diễn ra rất phức tạp, liên quan đến nhiều phản ứng hóa học và tạo nhiều sản phẩm trung gian. Do vậy, việc nâng cao hiệu quả xử lý thông qua tối ưu hóa quá trình phân hủy là hết sức cần thiết. “Ở Việt Nam, mô hình toán đã được áp dụng vào nghiên cứu môi trường từ lâu, chủ yếu dùng để đánh giá lan truyền, phân bố các chất ô nhiễm hay dự báo phát thải. Tuy nhiên, xây dựng một thuật toán cho một lĩnh vực cụ thể - ở đây là công nghệ xử lý yếm khí nước thải giàu hữu cơ từ chăn nuôi - thì thực sự là một hướng đi mới,” Chủ nhiệm đề tài PGS. TS. Nguyễn Thị Hà, khoa Môi trường, Trường Đại học Khoa học Tự nhiên, chia sẻ. Họ đã kết hợp với các nhà toán học tại khoa Toán, Trường Đại học Khoa học Tự nhiên để xây dựng phần mềm mô phỏng các phản ứng sinh hóa và quá trình nhiệt động học khi phân hủy yếm khí nước thải chăn nuôi giàu hữu cơ trong hệ MBR. Nhóm nghiên cứu bắt đầu bằng việc điều tra thực địa và lấy mẫu phân tích tại chín cơ sở chăn nuôi ở ba tỉnh Vĩnh Phúc, Hà Tĩnh, Đồng Nai nhằm đánh giá đặc tính của nước thải chăn nuôi lợn. Cùng với các đồng nghiệp tại Viện Công nghệ Môi trường (Viện Hàn lâm Khoa học Công nghệ Việt Nam), dự án đã xây dựng được một hệ thống xử lý yếm khí quy mô phòng thí nghiệm để đánh giá hiệu quả xử lý nước thải (mẫu thực tế). Hệ thống pilot này sử dụng công nghệ vật liệu mang cố định FBR và công nghệ màng lọc di chuyển MBR, có công suất 10 m3/ngày đêm. Kết quả phân tích cho thấy hiệu quả xử lý yếm khí của hệ thống đạt 70 – 80% giá trị COD trong nước thải, tạo ra 0,28 lít biogas/g COD chuyển hóa, với tỷ lệ khí metan trong khí thoát ra đạt 65-70%. Hiệu quả của bể yếm khí đã đáp ứng yêu cầu để nước thải đầu ra tiếp tục đi đến công đoạn xử lí tiếp theo và đạt tiêu chuẩn xả thải hiện hành đối với nước thải chăn nuôi (QCVN 62-MT/2016-BTNMT). PGS. TS. Nguyễn Thị Hà cho biết họ đã sử dụng dữ liệu từ hệ thống pilot này để làm đầu vào cho việc xây dựng phần mềm mô phỏng bởi “các hệ thống xử lý nước thải hiện có ở Việt Nam chỉ phân tích các chỉ tiêu đầu vào, đầu ra theo yêu cầu về môi trường nhằm đáp ứng quy chuẩn mà không phân tích các thông số về sản phẩm trung gian như các loại axit béo dễ bay hơi, protein và đường. Đây lại là những thông số mà thuật toán mô phỏng rất cần”. Để khắc phục, nhóm nghiên cứu đã bổ sung các thông số giả định và số liệu phân tích từ mô hình thực nghiệm. “Chúng tôi tiến hành chạy mô phỏng, đối chiếu với kết quả thực tế của hệ xử lý pilot, từ đó hiệu chỉnh thông số tính toán cho phù hợp. Toàn bộ quá trình này mất gần một năm thực hiện.” PGS. TS. Nguyễn Thị Hà nói. Theo chị, khi hoàn thiện được mô hình mô phỏng và áp dụng mở rộng trong hệ thống xử lý nước thải mới, “có thể giảm số lượng thí nghiệm khảo sát cần thực hiện từ 100 xuống còn 20-30, giúp tiết kiệm rất nhiều thời gian và chi phí”. Tuy nhiên, người đứng đầu dự án nhấn mạnh rằng mô hình này mới chỉ áp dụng cho một công đoạn cụ thể (xử lý yếm khí) của một đối tượng cụ thể (nước thải chăn nuôi). Để đạt yêu cầu đầu ra, nước thải sau đó phải tiếp tục được xử lý hiếu khí và trải qua một vài công đoạn khác. “Điều may mắn là nước thải chăn nuôi sau khi xử lý yếm khí đã giảm được 70-80% mức độ ô nhiễm hữu cơ, tổng chất rắn lơ lửng và có đầu ra tương đương với nước thải sinh hoạt, phù hợp để xử lý hiếu khí”, PGS. TS. Nguyễn Thị Hà tiết lộ, “Do vậy trong thời gian tới, chúng tôi sẽ tiếp tục cùng đồng nghiệp ở Đại học Kitakyush Nhật Bản, mở rộng mô hình mô phỏng cho những công đoạn xử lý nước thải chăn nuôi tiếp theo.” Việc mô phỏng các công nghệ xử lý nước thải giàu hữu cơ cho các ngành có nguy cơ gây ô nhiễm cao như sản xuất, chế biến tinh bột, mía đường, thủy sản... cũng có thể thực hiện tương tự. “Trên nền tảng phần mềm tối ưu đã xây dựng, chúng tôi sẽ chỉ mất khoảng 2-3 tháng để hiệu chỉnh các biến và thông số đầu vào phù hợp với đối tượng mới,” đại diện nhóm nghiên cứu nói thêm.           (Theo Bộ Khoa học và Công nghệ, Tối ưu công nghệ xử lý yếm khí nước thải giàu hữu cơ, Cổng thông tin của Văn phòng các chương trình Khoa học và Công nghệ Quốc gia, ngày 04/12/2020)   Ý nào sau đây thể hiện rõ nhất nội dung chính của bài đọc trên?