Danh sách câu hỏi
Có 19,663 câu hỏi trên 394 trang
Mặt phẳng đi qua ba điểm \({\rm{A}}\left( {0\,;\,\,0\,;\,\,2} \right),\,\,{\rm{B}}\left( {1\,;\,\,0\,;\,\,0} \right)\) và \({\rm{C}}\left( {0\,;\,\,3\,;\,\,0} \right)\) có phương trình dạng \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\). Khoảng cách từ \(I\left( {1\,;\,\,2\,;\,\,1} \right)\) đến mặt phẳng \(\left( {ABC} \right)\) bằng
Đáp án: ……….
Cho tứ diện \({\rm{ABCD}}\) có thể tích \({\rm{V}}\), gọi \({\rm{M}},\,\,{\rm{N}},\,\,{\rm{P}},\,\,{\rm{Q}}\) lần lượt là trọng tâm tam giác \[ABC,\] \({\rm{ACD}},\,\,{\rm{ABD}}\) và \({\rm{BCD}}\). Thể tích khối tứ diện \({\rm{MNPQ}}\) bằng
Trong không gian với hệ trục tọa độ \[Oxyz,\] cho tứ diện \[ABCD\] có điểm \({\rm{A}}\left( {1\,;\,\,1\,;\,\,1} \right),\,\,{\rm{B}}\left( {2\,;\,\,0\,;\,\,2} \right),\,\,{\rm{C}}\left( { - 1\,;\,\, - 1\,;\,\,0} \right),\,\,\) \({\rm{D}}\left( {0\,;\,\,3\,;\,\,4} \right)\). Trên các cạnh \({\rm{AB}},\,\,{\rm{AC}},\,\,{\rm{AD}}\) lần lượt lấy các điểm \(B',\,\,C',\,\,D'\) thỏa mãn \(\frac{{AB}}{{AB'}} + \frac{{AC}}{{AC'}} + \frac{{AD}}{{AD'}} = 4\). Phương trình mặt phẳng \[\left( {B'C'D'} \right)\] biết tứ diện \(AB'C'D'\) có thể tích nhỏ nhất là
Trong hệ tọa độ \({\rm{Oxy}}\), cho \({\rm{A}}\left( {2\,;\,\,5} \right),\,\,{\rm{B}}\left( {1\,;\,\,1} \right),\,\,{\rm{C}}\left( {3\,;\,\,3} \right)\). Tìm tọa độ điểm \({\rm{E}}\) sao cho \(\overrightarrow {{\rm{AE}}} = 3\overrightarrow {{\rm{AB}}} - 2\overrightarrow {{\rm{AC}}} .\)