Danh sách câu hỏi
Có 19,663 câu hỏi trên 394 trang
Trong không gian \[Oxyz,\] cho đường thẳng \(\Delta :\frac{{x - 1}}{2} = \frac{y}{2} = \frac{{z + 2}}{{ - 1}}\) và hai điểm \(A\left( {0\,;\,\, - 1\,;\,\,3} \right),\) \(B\left( {1\,;\,\, - 2\,;\,\,1} \right).\) Điểm \(M\) thuộc đường thẳng \(\Delta \) sao cho \(M{A^2} + 2M{B^2}\) đạt giá trị nhỏ nhất. Khi đó, tọa độ là
Cho tứ diện \[ABCD\]. Gọi \[M,\,\,N,\,\,E\] lần lượt là trung điểm của \[AB,\,\,BD,\,\,DA.\] Tỉ số thể tích của hai khối tứ diện \[MNEC\] và \[ABCD\] bằng
Cho hình thang cong \(\left( H \right)\) giới hạn bởi các đường \(y = {e^x}\,,\,\,y = 0\,,\,\,x = 0\) và \(x = \ln 4.\) Đường thẳng \(x = k\,\,\left( {0 < k < \ln 4} \right)\) chia \(\left( H \right)\) thành hai phần có diện tích \({S_1}\) và \({S_2}\) như hình bên. Để \({S_1} = 2\;{{\rm{S}}_2}\) thì giá trị của \(k\) bằng
Trên mặt phẳng tọa độ \[Oxy,\] cho điểm \(I\left( {1\,;\,\, - 1} \right)\) và hai đường thẳng \({d_1}:x + y - 3 = 0\), \({d_2}:x - 2y - 6 = 0.\) Hai điểm \[A,\,\,B\] lần lượt thuộc hai đường thẳng \({d_1},\,\,{d_2}\) sao cho \(I\) là trung điểm của đoạn thẳng \[AB.\] Đường thẳng \[AB\] có một vectơ chỉ phương là
Trong không gian \[Oxyz,\] cho hai điểm \(A\left( {2\,;\,\, - 2\,;\,\,1} \right),\,\,B\left( {0\,;\,\,1\,;\,\,2} \right).\) Tọa độ của điểm \(M\) thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho ba điểm \[A,\,\,B,\,\,M\] thẳng hàng là
Anh Duy làm bồi bàn tại một nhà hàng ở Hà Nội. Với mỗi bàn phục vụ anh ấy có thể kiếm được 15 hóa đơn. Trong bữa trưa, anh ấy phục vụ 12 bàn và mỗi bàn có hóa đơn trung bình là \[500\,\,000\] đồng. Biết vào buổi tối, mỗi bàn có hóa đơn trung bình là \[900\,\,000\] đồng. Số bàn tối thiểu mà anh ấy cần phục vụ để kiếm được ít nhất \[3\,\,600\,\,000\] đồng trong ngày là
Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x + 5}}{2} = \frac{{y - 7}}{{ - 2}} = \frac{z}{1}\) và điểm \(I\left( {4\,;\,\,1\,;\,\,6} \right).\) Đường thẳng \(d\) cắt mặt cầu \(\left( S \right)\) có tâm \(I\) tại hai điểm \[A,\,\,B\] sao cho \(AB = 6.\) Phương trình của mặt cầu \(\left( S \right)\) là