Câu hỏi:

21/07/2022 4,033

Cho các chữ số 0, 1, 2, 4, 5, 7, 8, 9; có thể lập được bao nhiêu số tự nhiên chia hết cho 15, gồm 4 chữ số đôi một khác nhau?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Gọi số tự nhiên có 4 chữ số khác nhau là abcd¯a0
Để một số chia hết cho 15 thì số đó phải chia hết cho 3 và cho 5.
⇒ dϵ{0; 5}
TH1: d = 0, số cần tìm có dạng abc0¯
Để số cần tìm chia hết cho 3 thì a + b + c ⁝ 3
Ta có các nhóm:
90mod31;4;71mod32;5;82mod3
+) a, b, c ≡ 1(mod 3) ⇒ a, b, c ϵ{1; 4; 7}
⇒ Có 3! cách chọn.
+) a, b, c ≡ 2(mod3) ⇒ a, b, c ϵ {2; 5; 8}
⇒ Có 3! cách chọn.
+) Trong 3 số a, b, c có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.
⇒ Có 1.C31.C31.3! cách chọn
⇒ Có 3!+3!+1.C31.C31.3!=66 số
TH2: d = 5, số cần tìm có dạng abc5¯
Để số cần tìm chia hết cho 3 thì a + b + c + 5 ⁝ 3, trong đó 5 ≡ 2(mod 3).
Ta có các nhóm: 
0;90mod31;4;71mod32;82mod3
+) Trong 3 số a, b, c có 2 số chia hết cho 3, 1 số chia 3 dư 1.
- Ta chọn số chia hết cho 3 trước: Có 1 cách chọn. Chọn tiếp số chia cho 3 dư 1, có C31 cách chọn. Sắp xếp các số này có 3! cách. Theo quy tắc nhân có: C31.3! cách chọn
Trong các cách chọn này có số có chữ số 0 ở đầu nên ta phải trừ đi các cách chọn a, b, c có a = 0, ta cần tìm bc¯:
Chọn số chia hết cho 3 có 1 cách, chọn số chia 3 dư 1 có C31 cách. Sắp xếp hai số này có 2! cách. Số cách chọn bc¯ là C31.2!
⇒ Có C31.3!C31.2!=12 cách
+) Trong 3 số a, b, c có 1 số chia hết cho 3, 2 số chia 3 dư 3.
⇒ Có C21.3!2!=10 cách chọn
+) Trong 3 số a, b, c có 1 số chia 3 dư 1, 1 số chia 3 dư 2.
⇒ Có C32.C21.3!=36 cách chọn
Vậy có tất cả 66 + 12 + 10 + 36 = 124 số thỏa mãn.
Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do chữ số 1 có mặt 3 lần nên ta coi như tìm các số thỏa mãn đề bài được tạo nên từ 88 số 0,1,1,1,2,3,4,5
Với các chữ số 0, 1, 2, 3, 4, 5  có thể lập được bao nhiêu số gồm 8 chữ số (ảnh 1)
Chọn số cho ô đầu tiên có 7 cách.
Chọn số cho ô thứ hai có 7 cách.

Chọn số cho ô thứ 8 có 1 cách.
Suy ra có 7.7.6.5.4.3.2.1 = 7.7! cách xếp 88 chữ số 0, 1, 1, 1, 2, 3, 4, 5 vào 8 ô.
Mặt khác chữ số 1 lặp lại 3 lần nên số cách xếp là
7.7!3!=5880 số
Đáp án cần chọn là: C

Lời giải

Kí hiệu T là ghế đàn ông ngồi, N là ghế cho phụ nữ ngồi, C là ghế cho trẻ em ngồi. Ta có phương án sau:
PA1: TNCNTNCNT.
PA2: TNTNCNCNT.
PA3: TNCNCNTNT.
Xét phương án 1: Xếp ba vị trí ghế cho 3 người đàn ông ngồi.
- Người đàn ông thứ nhất có 3 cách xếp.
- Người đàn ông thứ hai có 2 cách xếp.
- Người đàn ông thứ ba có 1 cách xếp
Nên số cách xếp ba vị trí cho 3 người đàn ông là 3.2.1 = 6 cách.
Tương tự: Bốn vị trí ghế cho phụ nữ ngồi có 4.3.2.1 = 24 cách.
Hai vị trí cho trẻ em ngồi có 2.1 = 2 cách.
Lập luận tương tự cho PA2 và PA3.
Theo quy tắc cộng ta có: 3.6.24.2 = 864 cách.
Đáp án cần chọn là: B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP