Câu hỏi:

23/07/2022 346

Cho các số thực x,y thay đổi thỏa mãn x2+2y2+2xy=1 và hàm số f(t)=t4t2+2. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của Q=fx+y+1x+2y2  Tính M+m?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: x2+2y2+2xy=1x+y2+y2=1

Đặt x+y=sinαy=cosαTa có Q=fx+y+1x+2y2=fsinα+1sinα+cos α2

Đặt t=sinα+1sinα+cos α2 Ta có Q=fsinα+1sinα+cos α2=ft

t=sinα+1sinα+cos α2  αtsinα+tcos α2t=sinα+1t1sinα+t cos α=2t+1 (*)

Để phương trình (*) tồn tại nghiệm α thì t12+t22t+12

t22t+1+t24t2+4t+12t2+6t03t0

Xét Q=ft=t4t2+2 trên đoạn 3;0 có:

f'(t)=4t32t,f'(t)=0t=0t=±12

Hàm số ft  liên tục trên 3;0 có f3=74,f12=74,f0=2

min3;0ft=74,max3;0ft=74

M + m =74+74=3034

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: y'=3x26mx+3m21

Cho y'=03x26mx+3m21=0x22mx+m21=0

Ta có =m2m2+1=1>0khi đó phương trình y'=0 có 2 nghiệm phân biệt x1=m+1x2=m1

Ta có BBT:

Media VietJack

Ta có:

fm1=m33m+2022fm+1=m33m+2018

TH1: 0<m1m>1

Ta có: f0=2020

Để hàm số có GTNN trên 0;+ thì

fm+1f0m33m+20182020m33m20

Xét hàm số fm=m33m2 ta có f'm=3m23=0m=±1

BBT:

Media VietJack

Dựa vào BT ta thấy fm0m2

Kết hợp điều kiện 1<m2

TH2:  m10<m+11<m1khi đó hàm GTNN của hàm số trên0;+ là fm+1

Kết hợp 2 trường hợp ta có: 1<m21<m1 .Mà mm0;1;2

Vậy có 3 giá trị của m thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: D

 

Lời giải

Khảo sát hàm số y=x3+3x trên 0;3

y'=3x2+3=0x=±1

+ BBT:

Media VietJack

 Hàm số đạt giá trị lớn nhất tại x = 1.

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP