Câu hỏi:

29/07/2022 624

Trong không gian vớ hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(3;2;−1) và đi qua điểm A(2;1;2). Mặt phẳng nào dưới đây tiếp xúc với (S) tại A?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

(P) là mặt phẳng tiếp xúc với (S) tại A nếu và chỉ nếu (P) đi qua AIAP

Ta có:IA=(1;1;3) là vec tơ pháp tuyến của mặt phẳng (P).

Mà (P)  lại đi qua A(2;1;2) nên:P:1x21y1+3z2=0x+y3z+3=0

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, cho mặt cầu (C):(x+1)2+(y3)2+(z2)2=1 và hai điểm A(2;1;0)B(0;2;0). Khi điểm S thay đổi trên mặt cầu (C), thể tích của khối chóp S.OAB có giá trị lớn nhất bằng bao nhiêu?

Xem đáp án » 29/07/2022 2,510

Câu 2:

Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):2xy2z2=0 và mặt phẳng (Q):2xy2z+10=0 song song với nhau. Biết A(1;2;1) là điểm nằm giữa hai mặt phẳng (P) và (Q). Gọi (S) là mặt cầu qua A và tiếp xúc với cả hai mặt phẳng (P) và (Q). Biết rằng khi (S) thay đổi thì tâm của nó luôn nằm trên một đường tròn. Tính bán kính r của đường tròn đó

Xem đáp án » 29/07/2022 570

Câu 3:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S:x2+y2+z28x+2y+2z3=0 và đường thẳng Δ:x13=y2=z+21. Mặt phẳng α  vuông góc với Δ và cắt (S) theo giao tuyến là đường tròn (C) có bán kính lớn nhất. Phương trình α là:

Xem đáp án » 29/07/2022 561

Câu 4:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(2;1;−1) và tiếp xúc với mặt phẳng α có phương trình 2x−2yz+3=0. Bán kính của (S) là:

Xem đáp án » 29/07/2022 439

Câu 5:

Viết  phương trình mặt cầu có tâm I(−1;2;3) và tiếp xúc với mặt phẳng (P):2xy2z+1=0

Xem đáp án » 29/07/2022 329

Câu 6:

Trong không gian Oxyz, xác định tọa độ tâm I của đường tròn giao tuyến của mặt cầu  S:x12+y12+z12=64 với mặt phẳngα:2x+2y+z+10=0.

Xem đáp án » 29/07/2022 311

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store