Câu hỏi:

25/08/2022 417

Cho hai dãy số (xn) với xn=n+1!2n và (yn) với yn = n + sin2(n + 1) . Mệnh đề nào dưới đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trả lời:

Xét thương :

xn+1xn=n+2!2n+1n+1!2n

xn+1xn=n+2!2n+1.2nn+1!

xn+1xn=n+22=n2+1>1,n1

xn+1>xn

→ (xn) là dãy tăng

Xét hiệu:

yn+1yn=n+1+sin2n+2nsin2n+1

yn+1yn=sin2n+2sin2n+1+1

Vì: sin2n+20sin2n+21

sin2n+2sin2n+11

sin2n+2sin2n+1+10,n1

Dễ thấy dấu "=" không xảy ra vì không tồn tại n để

sin2n+2=0sin2n+1=1

Vây sin2n+2sin2n+1+1>0,n1

yn+1>yn

Do đó (yn) là dãy tăng.

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Trả lời:

Ta có:

u1 = −2.1 = −2;

u2 = (−1)2.2.2 = 4;

u3 = (−1)32.3 = −6;

u4 = (−1)42.4 = 8

Đáp án cần chọn là: D

Lời giải

Trả lời:

Ta có:

u1=12

u2=u1+2.2=12+4=12+2.2

u3=u2+2.3=12+4+6=12+2.2+3

u4=u3+2.4=12+4+6+8=12+2.2+3+4

…..

Dự đoán số hạng tổng quát un=12+22+3+...+n  *,n2

Chứng minh bằng quy nạp:

Dễ thấy () đúng với n = 2.

Giả sử () đúng đến n = k ≥ 2 , tức là uk=12+22+3+...+k  ,

ta chứng minh () đúng đến n = k + 1, tức là cần chứng minh 

uk+1=12+22+3+...+k+1  

Ta có:

uk+1=uk+2k+1  

uk+1=12+22+3+..+k+2k+1

uk+1=12+22+3+..+k+k+1

 

Vậy () đúng với mọi n ≥ 2.

Mặt khác ta có:

1+2+...+n=nn+12

2+3+...+n=nn+121

 

Khi đó số hạng:

u50=12+22+3+...+50

u50=12+250.5121


u50=2548,5

 

Đáp án cần chọn là: B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP