Câu hỏi:

27/06/2022 1,413

Đồ thị của hàm số y = f(x)  đối xứng với đồ thị của hàm số \[y = {a^x}(a > 0,a \ne 1)\;\] qua điểm M(1;1). Giá trị của hàm số y = f(x) tại \[x = 2 + lo{g_a}\frac{1}{{2020\;}}\] bằng:

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lấy điểm \[A\left( {{x_0};{a^{{x_0}}}} \right) \in \left( {{C_1}} \right)\] (đồ thị của hàm số \[y = {a^x}\]. Gọi B là điểm đối xứng của A qua M(1;1).

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{x_B} = 2{x_M} - {x_A} = 2 - {x_0}}\\{{y_B} = 2{y_M} - {y_A} = 2 - {a^{{x_0}}}}\end{array}} \right. \Rightarrow {x_0} = 2 - {x_B} \Rightarrow {y_B} = 2 - {a^{2 - {x_B}}}\)

⇒ Hàm số\[y = f\left( x \right) = 2 - {a^{2 - x}}\]

\[ \Rightarrow f\left( {2 + {{\log }_a}\frac{1}{{2020}}} \right) = 2 - {a^{2 - \left( {2 + {{\log }_a}\frac{1}{{2020}}} \right)}}\]

\[ = 2 - {a^{{{\log }_a}20220}} = 2 - 2020 = - 2018\]

Đáp án cần chọn là: B

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho a và b là các số thực dương khác 1. Biết rằng bất kì đường thẳng nào song song với trục tung mà cắt các đồ thị \[y = {\log _a}x,y = {\log _b}x\] và trục hoành lần lượt tại A,B và H phân biệt ta đều có 3HA=4HB (hình vẽ bên dưới). Khẳng định nào sau đây là đúng?

Cho a và b là các số thực dương khác 1. Biết rằng bất kì đường thẳng nào song song với trục tung mà cắt các đồ thị  (ảnh 1)

Xem đáp án » 27/06/2022 4,064

Câu 2:

Hàm số \[y = {\log _{\frac{e}{3}}}\left( {x - 1} \right)\] nghịch biến trên khoảng nào dưới đây?

Xem đáp án » 27/06/2022 922

Câu 3:

Điểm nào sau đây không thuộc đồ thị hàm số \[y = lo{g_a}x(0 < a \ne 1)\;\]?

Xem đáp án » 27/06/2022 833

Câu 4:

Nếu gọi \[({G_1})\]là đồ thị hàm số \[y = {a^x}\;\] và \[({G_2})\]là đồ thị hàm số \[y = lo{g_a}x\;\] với \[0 < a \ne 1\]. Mệnh đề nào dưới đây đúng ?

Xem đáp án » 27/06/2022 579

Câu 5:

Tiệm cận đứng của đồ thị hàm số \[y = {\log _a}x(0 < a \ne 1)\] là đường thẳng:

Xem đáp án » 27/06/2022 449

Câu 6:

Hàm số \[y = {\log _a}x\] có đạo hàm là:

Xem đáp án » 27/06/2022 432