Câu hỏi:

27/06/2022 2,800

Cho a và b là các số thực dương khác 1. Biết rằng bất kì đường thẳng nào song song với trục tung mà cắt các đồ thị \[y = {\log _a}x,y = {\log _b}x\] và trục hoành lần lượt tại A,B và H phân biệt ta đều có 3HA=4HB (hình vẽ bên dưới). Khẳng định nào sau đây là đúng?

Cho a và b là các số thực dương khác 1. Biết rằng bất kì đường thẳng nào song song với trục tung mà cắt các đồ thị  (ảnh 1)

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \[H\left( {{x_0};0} \right)\,\,\left( {{x_0} > 1} \right)\] ta có:\[A\left( {{x_0};{{\log }_a}{x_0}} \right);\,\,B\left( {{x_0};{{\log }_b}{x_0}} \right)\]

\[ \Rightarrow HA = {\log _a}{x_0};HB = - {\log _b}{x_0}\] (do\[{\log _a}{x_0} > 0,\,\,{\log _b}{x_0} < 0)\]

Theo bài ra ta có:\[3HA = 4HB \Leftrightarrow 3{\log _a}{x_0} = - 4{\log _b}{x_0}\]

\[\begin{array}{*{20}{l}}{ \Leftrightarrow 3{{\log }_a}{x_0} + 4{{\log }_b}{x_0} = 0}\\{ \Leftrightarrow \frac{3}{{{{\log }_{{x_0}}}a}} + \frac{4}{{{{\log }_{{x_0}}}b}} = 0}\\{ \Leftrightarrow \frac{{3{{\log }_{{x_0}}}b + 4{{\log }_{{x_0}}}a}}{{{{\log }_{{x_0}}}b.{{\log }_{{x_0}}}a}} = 0}\\{ \Leftrightarrow {{\log }_{{x_0}}}{b^3} + {{\log }_{{x_0}}}{a^4} = 0}\\{ \Leftrightarrow {{\log }_{{x_0}}}{a^4}{b^3} = 0}\\{ \Leftrightarrow {a^4}{b^3} = 1}\end{array}\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Đồ thị của hàm số y = f(x)  đối xứng với đồ thị của hàm số \[y = {a^x}(a > 0,a \ne 1)\;\] qua điểm M(1;1). Giá trị của hàm số y = f(x) tại \[x = 2 + lo{g_a}\frac{1}{{2020\;}}\] bằng:

Xem đáp án » 27/06/2022 1,057

Câu 2:

Hàm số \[y = {\log _{\frac{e}{3}}}\left( {x - 1} \right)\] nghịch biến trên khoảng nào dưới đây?

Xem đáp án » 27/06/2022 878

Câu 3:

Điểm nào sau đây không thuộc đồ thị hàm số \[y = lo{g_a}x(0 < a \ne 1)\;\]?

Xem đáp án » 27/06/2022 743

Câu 4:

Nếu gọi \[({G_1})\]là đồ thị hàm số \[y = {a^x}\;\] và \[({G_2})\]là đồ thị hàm số \[y = lo{g_a}x\;\] với \[0 < a \ne 1\]. Mệnh đề nào dưới đây đúng ?

Xem đáp án » 27/06/2022 514

Câu 5:

Tiệm cận đứng của đồ thị hàm số \[y = {\log _a}x(0 < a \ne 1)\] là đường thẳng:

Xem đáp án » 27/06/2022 427

Câu 6:

Hàm số \[y = {\log _a}x\] có đạo hàm là:

Xem đáp án » 27/06/2022 405

Bình luận


Bình luận