Câu hỏi:
15/07/2022 683
Trong phương pháp quy nạp toán học, ở bước 2, nếu ta giả sử mệnh đề đúng với n = k + 1 thì ta cần chứng minh mệnh đề đúng với:
Trong phương pháp quy nạp toán học, ở bước 2, nếu ta giả sử mệnh đề đúng với n = k + 1 thì ta cần chứng minh mệnh đề đúng với:
Quảng cáo
Trả lời:
Phương pháp quy nạo toán học:
- Bước 1: Chứng minh P(n) đúng với n = 1.
- Bước 2: Với k là một số nguyên dương tùy ý, giả sử P(n) đúng với n = k, chứng minh P(n) cũng đúng khi n = k + 1.
Do đó ta thấy, ở bước 2, nếu ta giả sử mệnh đề đúng với n = k + 1 thì ta cần chứng minh mệnh đề đúng với
n = k + 2.
Đáp án cần chọn là: C
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời:
Ta có:
u1 = −2.1 = −2;
u2 = (−1)2.2.2 = 4;
u3 = (−1)32.3 = −6;
u4 = (−1)42.4 = 8
Đáp án cần chọn là: D
Lời giải
Trả lời:
Ta có:
…..
Dự đoán số hạng tổng quát
Chứng minh bằng quy nạp:
Dễ thấy (∗) đúng với n = 2.
Giả sử (∗) đúng đến n = k ≥ 2 , tức là ,
ta chứng minh (∗) đúng đến n = k + 1, tức là cần chứng minh
Ta có:
Vậy (∗) đúng với mọi n ≥ 2.
Mặt khác ta có:
Khi đó số hạng:
Đáp án cần chọn là: B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.