Câu hỏi:

21/10/2022 475

Giả sử Q là tập con của tập hợp các số nguyên dương sao cho

a) k Q

b) nQ n + 1 Q n ≥ k.

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A: sai vì QN chứ không phải N∗⊂Q, nên mọi số nguyên dương không thể thuộc Q hết được.

Đáp án B: đúng vì theo lý thuyết của phương pháp quy nạp toán học.

Đáp án C: sai vì theo giả thiết b) thì phải là số tự nhiên lớn hơn kk thuộc Q.

Đáp án D: sai vì số nguyên âm không thuộc Q.

Đáp án cần chọn là: B

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho dãy số (un), biết un = (−1)n.2n. Mệnh đề nào sau đây sai?

Xem đáp án » 24/08/2022 24,823

Câu 2:

Cho dãy số (un) xác định bởi u1=12 un=un1+2n với mọi n ≥ 2. Khi đó u50 bằng:

Xem đáp án » 25/08/2022 14,984

Câu 3:

Cho dãy số (un), biết ,u1=1un+1=un+3với n1. Ba số hạng đầu tiên của dãy số đó là lần lượt là những số nào dưới đây?

Xem đáp án » 25/08/2022 12,451

Câu 4:

Cho dãy số (un), biết un=nn+1. Năm số hạng đầu tiên của dãy số đó lần lượt là những số nào dưới đây?

Xem đáp án » 25/08/2022 2,412

Câu 5:

Giá trị của tổng S = 1 – 2 + 3 – 4 + ... −2n + (2n + 1) là:

Xem đáp án » 25/08/2022 1,814

Câu 6:

Cho các dãy số sau. Dãy số nào là dãy số tăng?

Xem đáp án » 25/08/2022 1,465

Câu 7:

Cho dãy số (un) thỏa mãn u1=12;un+1=un2n+1un+1,n1.

Sn=u1+u2+...+un<20172018. Khi n có giá trị dương lớn nhất là:

Xem đáp án » 25/08/2022 1,142
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua