Câu hỏi:

17/07/2022 2,077

Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y=2sin2x+cos22x

y = 2sin2 x + cos2 2x:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bước 1:

Theo công thức hạ bậc ta có: 

2sin2 x = 1 – cos 2x

=> y = 2sin2 x + cos2 2x

= 1 − cos2x + cos2 2x

= (cos2x)2 − cos2x + 1

Bước 2:

Đặt t = cos2x; t∈[−1;1]

ta được y = f(t) = t2 – t + 1; t∈[−1;1]

Bước 3:

Ta cần tìm GTLN và GTNN của hàm số f(t) = t2 – t + 1trên đoạn ∈[−1;1] f1=1;f12=34;f1=3

Số lớn nhất là 3, số nhỏ nhất là 34

maxy=3;miny=34

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Điều kiện:

cos2xπ40

2xπ4π2+kπ

2x3π4+kπ

x3π8+kπ2

Đáp án cần chọn là: B

Lời giải

Trả lời:

Ta có: y = cos 2x + cos x = 2cos2x + cosx – 1

Đặt cosx = t, t∈[−1;1].

Hàm số trở thành y = 2t2 + t − 1. Đây là 1 parabol có bề lõm hướng lên, có hoành độ đỉnh x=b2a=14

BBT:

Media VietJack

Dựa vào BBT ta có:  M=2,m=98

Vậy  M+m=298=78

Đáp án cần chọn là: D

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP